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the ©quations of fnol Ion governing the unsteady flow In a 

liquid bi pi ops 11 ant rocköt aro derived. These are utilized in an an«! I yt lea 

Invest iget Ion of two rinechan I sms which are capable of produclncj linear 

combustion Instability In the high and Interfiled I ate frequency rarrg©s7 

typified by the appearance of transvers© waves and entropy waves 

r<si3p®atIvoiy. 

The charactarlstlc equation of each rocket- system Is derived, 

and It U ähown how the stability limits may be determined for a particular 
■ ■-■■'■''  ■ '        .; !  :'i' 

rocket motor. 
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I"       INTRODUCTION TO 
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TNI;   1III.ÜRY 

Cuuplcd wiI 

OVör li Iglior   porformtifK 

©as© combustion ch.aml 

(ji Öw in   linpor Tdnco.     I 

tho plionomonon üf comb 

accepted ö&f in it ion do 

regular per-lodTc oscl I 

lainod in MOIIIU iwnnor I; 

ace obsoi'vod oxperlrnonll 

eyel©s per   second; eT a 

of chiinibor pflll'ürwT 

Oscl I UrMons c 

and I luId dynamic yarlat 

cal or thermal  fa!lurs, 

i:- 
i 

I 

■"'   fhe'"l"-|S^-l^-P...'IH.mwl,l<J, I,,,, .„„M, „.,„ 

l""hl'm'  wlil'.ii^.,ir,„  M, „ny .LKI,., , „ 

g   i-'^ I Ity, „„„„H,,, I..,!-!.,, „„iw^uiy   ^ 

mi ""ivi, it riiiwupSaa^, hl,,^liy] ol 

"tl<,"'i lnfMbVs+l0^^rt8^preSs^WhJch^fficiTn.    , | 

y tho cumbu.tlon Pr«u53.    ThHt„. p„.s,„ir„ v.rl.H,,,., 

ally l-o cover a froqucnoy ,„,„,,„ ,,,« ,„ .,„ ^ 

iplltud98^|cB  v,:,ry fro,,, !,,.„  Ir, „no lumd, ,.l por.unf I 

varying chamber prefisure 

fatigue both the clwamber 

transter to the wa 11 can 

proftonco of hIgh  froquonc 

deter loratlon arid bui nout 

motor can withstand the v 

I Ions may be set up  In  I 

destroy  11 s @ff ect i ven eS 

failure of Tho propujsTö 

Indus {on In a system   wl 

Since  The presence of c 

of the rocket motor,   i 

■ 

... t -—^.vi^Uv*«. . *i«<««~'wiwcijg^a8 

1   ThQ 
| '  |    M<lUiril'™r".'Hunl   rockol   poworplc.l,, of 

'"'d"'"!:'"l"""Nytlu, dov«|0p,„,.„tol  |,,,,1, ,.,„.,-;„,, 

- 
f  imp and honco 0, a||  dopß„(tent pUg^ 

lr'5""'"l,i,,hlyu"ll"iilral'l" irgiäl^ if^a J,hanl 
and control mdI function may ensue sh< ■'"'My- (he 

, ^  well as the varying thrufit will unduly stress or 

u 

end lit; mounts causing mechanical fellure. The heel 

bo increased seyeral hundred precent; duo to the 

y osclTlatlons,, which mey be sulficient to ceuse rapid 

of Hie chamber wall- rinally, even If the rocket 

ibration and heat tranr/fet"; severe secondary oscilla- 

)  delicate (juidanc© and control system which will 

Any, or all, of these effects will result in 

unli' and can elimlnal'ö !t from eonslderatlon for 

ich requires reliability, accuracy and dependability. 

-■■stion instability effects tho life and roliabilily 

necessary that we gain ah undor st-uKiine of the 

^ 

H 

I 
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2. 

fluid ciynamk: procGsson no that tho conditions which promote) this d.rfrIniPnta 

ionn of corribustion may bo dotormlnod and consequently avoldod, control lod or 

;| 

ul Irninatod. 

Althougtvthero havo bwn othor attompts dt clüHalf lccitIon; (for 

oxmnplo,  s0GRefS.   Sand  II) tho froquency spectrum  In which combii.tl 

stability occurs, can be convenlontly scparoted  Into three parts;  den 

tiofi  In- 

    

low,   Intermediate and high frequency Instab11 ity, rosjiectlvely.    This ap- 

denoted 

■<-_.-"-■. ^ : ■ 

pears to be a natural division since the coupTed wave process, governing 

each of these three types, are different and hence lead to difforont charac- 

i'orlstlc frequencies. 

If all the (jas in the chamber yunjor; periodically, large Inertias 

are Involved and low frequency oscillations result. Those low frequency In- 

stabllltles, commonly referred to as "chugging", have fröquencles ranging 

from 10 to 200 cycles per second, and have been demonstrated both theoreth 

cally (Refs. 2 and 3) and experimentally (Ref. |0) to depend primarily upon 

tho coupl ing with the propellant feedlInes. Since this case has ajroady been     ' 

thoroughly explored, and since the instability may be eliminated In most in- 

stances by increasing the Injector Impedance, that is, by increasing the in«      j 

Jector pressure drop, we need not consider this type further» 

intermediate frequency instabilities have boon observed experlmen- 

tally (Refs. 9 and 16) and generally occur at frequencies of several hundred 

cycles per second, it has been postulated (see Section 2) that the character- 

** 

: 

1  i 

. 
t 

< 
■ 

istic frequency may be attributed to the presence of entropy waves In the chamber. 

This type h,as not yet received a comprehensive analytical treatment, until now. 

High frequency or "screaming" oscillations are generally associated 

with various acoustic modes of the chamber and occur at frequencies between 

several hundred and several thousand cycles per second depending on the mode, 

chamber geometry, and exhaust nozzle. That is, experimental observation 

n J 
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3. 

indicoie Huii tho  intonso Brtrlll  Htmul thül occanlonülly  IHM from a 

rockut  is produced by hiyl,  (rwqu^cy pr^suro of;cl I lüt lot^, chcroctor i^d 

by IroqnoncloG  In the nuighborhood of  the orc^n-pip.. rösonaZ^ of  tho 

-sS-     ' 

chamber 

ha 

Those  In^biliMo. wore  Initiully found to be of the lonqitudi" 
3 

ypo; buf with more adequate instrumentdtion, 11 wes (uncovered that 

tranBver.o mode, wore also present, Tho most frequent/y encoded träns,. 

verse modes are forms of the flrGt tangential, or "spinnlng^loshlng" mode, 

In which the pressure waves propagate diametrically or tanrjentl.il ly across 

the chamber. Transverse modes of Instability In rocket chambers have not as 

yet received comprehensive analytical treatment, until now. 

In all of these cases; If oscillations are to be ma Into I nod, there 

must be some process of coordination which periodically feeds sufficient 

energy into the oscillating gas system to sustain the process. Of course. 

In order to have a closed cycle, the gas dynamic system must induce the com- 

bustion process to release energy at the proper time phase-wise during each 

cycle; thus, any theoretical model must demonstrate a closed loop. 

The analytical Investigation presented here consists of two parts. 

The first deals with the treatment of high frequency transverse mode insta- 

bility, In which the first tangential mode Is of primary Interest. The second 

deals with a theory of combustion instability In I'lio intermediate frequency 

range which Is characterised by the appearance of entropy waver, in I ho chamber. 

Although analytical treatment of the problem of combustion Insta- 

bility in liquid propel I ant rockets Is comparatively recent, an extensive 

literature on the subject already exists. Undoubtedly, the most comprehensive 

treatment of the subject, to date, Is due to Crocco and Cheng. Because of the 

thoroughness of the analysis and discussion appearing In thoir recent treatise, 

(Ref, 18), the reader is advised that the latter constitutes the primary 

reference for this thesis. 
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In tholr rycont survey, (Ref. |3), p.rln.M., ami Denn IK point on 
. 

I tlia!- 
■ ■■ 

Of üll  lype-y of combustion osc 11 ItrMom. whicii have- boon obwrvmi,  the organ- 

pipo typo,  [n which ihc> wavelength of the ospilUtibn Is related to the dlmen- 

• 

slons of tho chamber, hns tho oldost history. It seems that Klgglns produced 

UP. acoustic oscillation or "ülncjinti flüinu" in 1777 liy surrounding a diffusion 

flütrio with a  largo duct open at both ends. 

Since that time,,   ["hermo-acoustic osclllationD hcivo IJI-'IMI obr.orvoii 

In ninny different plecerj of   laboratory nnd  ifidiistriul  equipment;  for examplo; 

detonation tubes and gas-fired units, and consequently, many  Investlgitors 

have attempted to analyze the mechanisms involved. 

One of the earl lent analyser., due to Raylelfjh (Ref.   1), was one In 

which he advanced a criterion without formal  proof, that for the excitation 

of thermally driven oscillations, there must be a fluctuating heat release 
B 

within the medium, such that It has a component  In phase with the varying 
I 

component of the pressure at the position of heat release. Note that this 

implies that heat release at s pressure node cannot contribute to thermo- 

acoustic oscillations, In a crude sense, Rayleigh's criterion may be con- 

si dereü to be nothing more than the restatement of tho conditions for a 

closed thermodynamlc cycle« That is, if heat Is supplied to a medium at high 

pressure and rejected at low pressure, then piston work may be obtained. 

Presumably; this net work Is utilized in driving the pressure waves. 

As previously stated, many contrlbutors have analysed the fluid 

dynamics of various combustion driven oscillations, for example, see Refs. 12, 

13, 14, 15 and 20. However, since these and other published works do not bear 

directly on the specific problem which concerns us, namely, combustion in- 

stability in liquid propellant rockets, we will now proceed to review some of 

the concepts loading to the theory presented In the following sections. We ' 
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- 

will heg In with the ovoluMon of the time log concept   In rocket tnoloi :,. 
■ 

. 

Mr sty WO rocoqnUü that the normal process of cornburhon in a 

rockot motor is of a hUjhly turbulent nötüre^ and h'erice there are timo- and 

spftce-wlse fluctuations of thu presGuro .uul dopondonI' thormodynarnlc und 

fluid-dynamic variables throughout thu chamber. If tho fluctuations have 

Email amplitudes, than the combustion Is considered ymootf^ and when tiioy 

have large amplltudas^ It Is curl lad rough burTiTng. Ffow'ever',, these terms are 

qtifilltatlvo at besf,   inasmuch as the amplltudo oi   I'ho oscillations alone is 

an Insufficient criterion for classlf'ylng the stability of the combustion. 

Rendoin fluctuations. I.e. thosa which do not hava a characteristic 

frequency,, exhibit tho attrilnrfas of lurbulonco and In CMI inin cases will not 

bo detrimental to the practical operation of the rocket. That ls; tho time 

averagad exciting forces are nögllgiblo and the combustion Is rough but stable. 

Whon,, how0vor; porlodic fluctuations aro present such that one or more com- 

ponents of the frequency aro predominant and grow in amplitude, the Integrated 

of facts will be non-zoro and mechanical or thormal failure may follow In short 

order. Accordingly^ we not© that the occurence of rough and detrimental com- 

bust Ion, given the name unstable combustion; Is character 1 sod by oscillations 

with wall"dollnod frequencies whosa amplitude is limited only by the damping 

of the system» This distinction between rough but stab Io combustion; and un- 

stable combuetlon was advancod by Crocco several years ago. 

In or dor that unstable combust ion ox ist as defined above; some 

coordinating influence; which is capable of amplifying a random disturbance; 

mus"! be present. In this connection; In 1941, von Karman's group advancod 

the concept of a combustion time lug, or delayed Instantaneous combustion. 

This was defined as the time between the Injection of a propel I ant element and 

Its evolution into combustion products, which was assumed to occur instantane- 

ously, after a certain delay. 
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Gunder und Frlont,  (Rof. 2) mra tho first to pr.^,,1  a formull^d 

analysis applying this concopt to a treatment Of  low frequency combustion  in-. 

stability.    Tt.oy postulated a constani   vdluo | tho §3  l.ö ,,nd wore abl. to 
.i -. i. . 

i 

demonstratö fhat under certain circunistdncöS; this time lag could provide the 

noc:u:i!,i..,ry coupiincj betwoon tho rocket chambor and the propel lont feed system 

which would result in unstable amplification of a random pressure disturbance. 

Other, more c; I aborato, I ow frequency ana I yses foil owed, I nc I ud I ng the ear I y 

work of Summer Mo Id (Ref. 5) who established the thoorottcai limits of low 

frequency atability in his analysis which Included the effects of chamber 

capacitance and feeding system Inertia. However,, since each of these retained 

the constant time lag concept,, the variation of the rat© of burned gas genera- 

tion; or source of driving energy, could bo modified only by the rate of supply 

of propellant to the chamber, which depended entirely upon the sensitivity of 

the feeding system to chamber pressure oscillations. 

Now although Crocco war. willing to retain the concept of on instan- 

taneous transformation of liquid propellant into gaseous products, ho reasoned 

that the specific rat© of conversion of unburned propellant elements Into com- 

bustion products depends on the sensitivity of the activation processes to 

chamber oscillations; and In 1951 he introduced tho concept of the sensitive 

time lag. Thus the total time lag T* ; during which various physico- 

chemical processes occur, was considered to consist of two parts, a constant 

part "£. during which mechanical processes Insensitive to the thermodynamic 

states of the surrounding gas take place, and a variable sensitive part T 

during which activation processes occur which are sensitive to the oscillations 

occurring in the surrounding gas. Simply written: 

Ti . f; + T 
2, 
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WIKM'? the? bar donolo'i '-tc.jdy ir.ttii'o.    And then to n.'ldhj  Ilic srnsillvu 11 mo 

log Jo tho rates of the condltioiiimi prpcessö9> Crocco wrote un  intogral 

if(]\kv\ Ion  I'M   ,\n ülomont bin n intj .11   I line   " '■    . 

wboru   r    h; the ovorall  rate of tbo condltlofihig procosseD;  und  Ihc  inhxji .il 

miisl   bo uviiludtud  followinr] noch   individual   propollnnf oloinoiil.    Tbo rMlo   r 

vorluü <IIOIK] tho patli of   ITitegratloni and upon correlating all of the physl- 

Cül  factors which cause thin var idtlon,, to the pressure^ Crocco obtained the 

I '■l.lliuli 

2.3 

which Is valid for small amplitudes of oscillatloeii The quantity Ti,  which 

Is actually a weM-defined mathematicül quantity (soe Ref, 18) was called an 

Interaction incJex; and was assumed to be a charödwIstlc of a given propel lant 

combination« Crocco observed that actually; of course^ fiensltIvc? and Insensi- 

tive time lags are physically innoparabiu and occur i;; imuitaneously. Hence 

Eq» 2.1 should be considered as a schematic representation for the actual 

events. On combining Eqs. 2.2 and 2.3 we observe that the sensitive time lag 

exhibits inverse pressure dependence^ since there Is readily obtained: 

: consl. r pn 

2,4 

Application of the sensitive time lag concept to the treatment of 

combustion instability was first made by Crocco (Ref. 4) for the cases of low 

frequency instability In rnonopropellant and blpropellant motors^ and roughly; 

for longitudinal high frequency instability. The term intrinsic instability 

was introduced to indicate that due to the coupling between the pressure oscil- 

lations and combustion processes, through the medium of the sensitive time lag. 

Instability can occur even if the injection system do livers a constant flow. 
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A series of papers by Crocco und Chens deuMng with ,1 IMüI 0 r«f Ined 

Irociiinont of fhf.' low und hitjii I r(M|ii('!n:y lone) iiudiii.i I model, of combu'ilion in- 

stability followed and was recently asselnbied In thoir monograph (Ref. IB), 

In this same reference,, It wnn polntod out th.,rl lliuor(>Mc;.il diiolysos woro 

Incklng foi l'wo Irnpür'tunt iiiochonkimi.i. Accordingly, we will consider the treat 

mont of thoso two dh'lincl prol/hmif.;, trcin5Vorso wave diid unlropy W.JVI; corn- 

bunt Ion InstabJIIty. 

In both caüwH to bo .in,]Iy^ed hnre, the troaiment Ir. restrlct&d to 

linear Instability, whore the perturbations are sufficiently yinall so that 

second order terms may bo cone I dor od negligible, it' is recognized that fully-' 

developed combutvMon Instability is generally a non-linear phenomenon, 

characterised by the presence of shock waves, but as has been observed ex- 

perimentally in a great many caüorj, inivlab i I ity will ottimes result from the 

progressive amp Iification of small disturbances. Thus, when m  determine 

stability limits, It means that within those limits, the system will be stable 

to small disturbances, if a given system is linearly stable, and no large dis- 

turbances are applied, then seIf-ampi if leaf ion cannot drive the system to In- 

stabil ll'y, and no high-amplitude pressure oscillations can appear, 

Let us now describe the physical system and the mechanisms which 

are Involved. At the high frequoncles normally encountered In transverse mode 

Instability, the injection syvj-om cannot respond to chamber pressure oscil- 

lations. Thus, for instability I'o exist, it must be of the Intrinsic variety, 

and a coordinating process must be present, so that oscillations of the rate 

affecting factors will produce organized oscillations of the burning rates, 

which will provido the necessary exciting force to maintain the coordinating 

process. 

In our investigation of transverse modi";, wo will retain Crocco's 

model of the sensitive time lag as a suitable mechanism, and we will 
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InvLvrMtjnto ihe ülohllily of three-dlmens loru I pot lui t)(-v| lonn wllh exponentlol 

t imo dopondoncG, In a general rockel system consisting of o rigid cylindrical 

chamber with a liquid propellent injecfor and u fixed converging-diverging 

<;xhr)ust nu/./io.  It '.hould bo ubsorvod I'hint duü to iho pi oiiomu.) of Hio oxhaii;..t 

nozzle, purely transverse oscl I l.il loir. iianiKrl' he; piosonl,, if n Irnnsvoi'.i' 

per'turbal Ion ..ippoar;;,, n lony I tudiric) I wavf.» will bo toflocfod in Ibn i.nbfion ic 

portion of tbo no/^lo, diul Ihu;., n form of combliKnl nioilc inii'.l oxi';.!,, in contra- 

distinction to what occurs in a cyllndrlcal chamber lorminalod by piano 

closed ends. 

To explain the experimentally obsorved occurronco of combustion In- 

stability In the Intermüdlato froquoncy rango (Hot. 9), another mochanh'.m must 

be considered. In l'hls CöüO; HIO froquoncles aro too blfjii to bo the result of 

chamber and feed systom couplingi and they aro too low to correspond to a 

mod© of resonance of the gases In the chamber. The proposed mechanism depends 

on the presence of entropy waves In llio chamber, and In some cases Involves a 

apodal form of coupling between the injection system and the chamber. 

Entropy waves may be produced by chamber pressure oscillations in 

one of two ways, each of which Is capable of roinfor'cing the other',. However, 

in a bI propellant rocket, the primary cause arises when one obtains a varia- 

tion of the mixture ratio about its moan value.. This occurs when the oxidlzer 

and fuel Injectors respond differently to chamber prentiure OüC 11 lat loin'., I'IUIü 

producing s stream of propellent elements with an off-mixture ratio. If the 

mixture ratio is oscillating, the temperature and the entropy of fhe products 

of combustion at a given station will also oscillate,, Por typical rockets 

designed for maximum thrust, both become .u, i(. or smaller as the oxldizer- 

fuel ratio increases or decreases, (see Fig. 2.1) 

As a result, If one examine*) the conditions In the chamber of this 

rocket at any given Instant of time, one observes that +l e gas entropy 
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(I|;,IT ibirl ion has a wavo-l iko pulforn wh ii.h moves döwnstroarn wiih  hhe gas volo- 

cliy.    The ontropy üüciNyliun rt'llocli. pi onaure waves tit iho exhaust nox/lo 

which travel upstream with the spood of äound to the Injector facee    This 

closes the feedback  loop ullowliu) iho procon» to slmi nil ovor  .KHIH,.    Tho 

oxpl.innt loii oi   thli mc.ii: h a n I nrn was  ( h i/i   c)lvuii tout-jhly hy UutKuin mul ChtMU-ty 

(Kof,  9)^   .Hid h.J'..  i.lncc been unlnrcjocl upon    (Rnh.,,   I()v   Mi),,     In   IIH.I IIW rhoniciti- 

cal   Iroatmont  In which tho ntobility  limltij for  this rnochüninm will  ho deter- 

iniiKMj,  CtoC(.;ol'i model  of   Iho M.'ii'i ir i vo i Imo   Idcj   i'-. exlondüd io .illow  for  tho 

functional   dopondonco of  tho rntu of   Iho condlt Ion inrj piocw^sst". on   fho inixiuro 

ratio,    Tho treatment of entropy wave Instability appears  in Sections 9 

through  13. 

,^ 



TRANSVERSE WAVE INSTABIL 

3« !:J^a!dilMimJ2iJül£,i2mUli^^^ 

In ti yonornli/IM| tr©atfr)©n1 of combustion Instability, we are con- 

cerned with the three-dlmenslonaj motion oi  a gas,  contnlning ü  dIs IT!but I on 

of droplets of llquhl propol lant; which flows through o rocket chfimbor, I'ho 

droplets which burn at dlfforont locutions In the chamber will Itien corres- 

pond to a distribution of sources of mass, momentum and energy. Let us 

formulcito tho conservation laws for this two-phase flow. 

Wo let p  denote the density of the qvr,,  defined os the mass of 

gas per unit volume of gas; and lot A denote the density of the liquid 

droplets, defined «s the mass of liquid per unit volume of gas, that Is, we 

will neglect the volume of the droplets with respecT to the geseous volume. 

Then letting a   denote a dimensional quantity, tho conservation of mass 

becomes 

where V  and V^ are the gas velocity and liquid drople'l velocity ro-- 

spectlvely, t  Is the lime and V>      is the divergence operator. 

Nc:.w nnfe iliat the continuity equation may be treated In another 

way. If <$>     denotes the instantaneous rate per unit volume at whh1, gas Is 

generated at any location In the chamber, so that 'f3 corresponds to a 

source distribution for the gas phase and simultaneously a sink for the 

liquid phase, then continuity may also be written: 

%    r**-ifl*] ***--$-**.(£%*)     ,2 

.■ . . 
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li  vlacpsilty  Is negloctad; the conservation 61 ino/iiGntuin in hhle 

two-phose '.y'.ivin fakoc, the fortnj 

which   Is somewhat more compl icrlcd  Ihon  Mio foniM i.ir l-ulor oquatlon. 

The energ/ changoa, imi'jl ohoy thy first  law of thermodynamics^ 

i.e., the work done on the gas; plus the heat added to tho gas must- equal 

the ctiang© of ononjy of  tho ga«.    Tho uovordil   form:, of  I/IKM rjy which will  he 

considered here Includo k Inolic,   inlürndl nnd chomicdl  onoi ()y; howovor ^ tho 

work dono |jy viscous rrl'rosr.ori and hoat trcinsfurrod l)y conducl'lon or dlffuolon 

will  l)o nog Ictrlod.    Hy clef in i I ion,, 

V #1 

Gs     * &     +" 

# Vn* -  Vr ■i 4-    t^ 
Z 

'!>, 4 

and noting that 

sine© for tho liquid phase lln* Internal energy and the enthalpy are very 

i -if 
noarly the same; and tho correspond Ing cümnion valuo Y\ *    Is Intended to In- 

clude the chemical energy of the propel lants,, we obtain hhe following equiva- 

lent forms of the energy equation: 

h e^^+A^n* +lvh*t)-' O   3.6 

and 

Ö 

.y[: 

■ 
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Notiricj thai'   n    Is a function of the tömperattirs, tho four equations 

3.l;  3.2f  3.3, üiul 3.7contüin olfjlit unknown:,    Z5*» V   j   p \    '    ,   ^   i // ,  ^ 

^ 
.mil    hö     ^ honcü four additional  'jqn.ifion« ai'o roquired.    Flfsf wo Have file 

equation of state for the gas phase! 

A  iKfcond oqiMlion roiullnr)  lh(i buininri r.ito        Y        to the    other 

quant I ties will  bo dor ivod  Uiloi . 

A thlr'J (.'qu.rMuii   hi obl.iinod  from  IIKJ dyn.Jinlc bolxwlor   ol   Iho 

droplotaj 

,J 
3.9 

which cujnumoi;. that' tho forco oxortod by the gases on the liquid droplets Is 

inversely proportloriül l'o tho Reynolds Number. 

Tho fourth equation could be obtained from tN heat balance 

of tho droplets which would yield an expression relating Vu and n 

Wo shall, however, neglect the heat transfer belwoori tho gdsos mul Iho liqui 

drop lots by taking (see Ref. 18) 

dt*    at* 
Si " 3« 10 

This  Impllo'i  thai  when wo follow the motion  sf a particular   droplet;   the 

1    t 
value of   hy.   Is conserved.,     in other wordn;  tho drop tot retains tho value 

i    # 
of    h/f    with which  it was  Injected. We may men writes 

\     t   i ■*   \l^%       I * t ^   v/ *1" 
^5 « ng H- Z « n^5o s h^0 + Üs        3.11 

Cm 2L 
^-      , / Hi- 

where h« and ^^2 are the values of the propel lant enthalpy and kinetic 

energy at the Injector head; and we remark thai thor.o quaniitlor, may bo ro- 

tated to tlio pressure at the Injector by mean:, of the injector response oqua' 

I loin,. I( Um injoction system does not respond to chamber pressure 
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\ ^ oscillations;   llinmixlmr ratio ramalns constant!  thöröfore   i,'1/„   must  Mko- 

wise b© constant^ and unless thQ  Injection voloclly  h, inodulated;    -^      Is 

also confvlüni*     in gcnofül^   Ihr mlxturö r.jl-jo and   iiijt,".: M(JII voUnJiy ..n (> n<»i 

constant^ and ©ach dropiel retains a different charactoriütlc ^tacjoalion un- 

Ihnlpy rlfilil thronc)h   \\\n momcirl  ol   Its cunvon-ion   Inl'o buriioci gun. 

Wo ftiay now prociH.ul 1'0 non-dlmenslonal Ize Ihc Inioyoinrj pquatlons 

by using as reference values      ^   ,     P0*   ,   J*      mid    Go   - ^^"1 

which are the steady state values of p'"eHsure^ density;   hemperature ol  the 

gas and the velocity of  sound in I'he gas at the injector  face..   Note hhai 

since    Y      must be zero at the  injoctor facö, the folnroncw valuoß corres- 

pond l"o stagnation value;, of  i'he respective quantities.    In I'he study ol 

transverse waves;   it  is convoniünl   io usu ilio clKimbor rndiuri     ic     as  I'he 

reference length; whereas  in the üitidy of   loin)! ludina; waves,  I'he combustion 

chamber  length  is a more suitable reference length«    Wo will begin by select- 

ing    fc.    as the measure of   length. 

Lei t = Co      ^ 

.!.fl. 

p = 2 
P. ^ 

^ 
H 

i, 12 

where X"    Is the ratio of  specific boat;! which  is assumed to be constant over 

the range of variation of     "f  '   -    Thin assumption yields   dn a öU  in terms 

ol   llie nun-diiiiuii!.; ional  vai lab los.    The non-dimensional equations may now be 

wi 1 llan! 

'iL 
di 

-M-^) + v-^v Y^,) .o Lla 
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3« 2a 

3a 

P 

ir-"?1^ juai^3 

at 

V •V)k, 

p  a   /0 T 

V   ft    "ti^'-hs)        3.7= 

^vi 

2)t 
T 

3.8a 

3„9a 

jV\/s cinis   ^o 
3.10a 

LS u ̂, '-\ w.1 
VJL *  ^i^e 

.'J,. 11 a 

and now lot un procood liy introducing small perturbations. 

We will cons I dor each of the dopondont variablos as tho sum of a 

steady state spaco-varlablo and a time^dependent perturbation so small that 

terms higher than those linear In Iho perturbations cm]  be neglected. Thus' 

p ^ p -t P   ,  p -^ p-|~ p  etc*, where the superposed bar denotes steady 

ntato and tho primo donoiv. '.DM I I por I mbat Ion. Tho steady state equations 

and the equations linear In Nie porturbdtions follow directly. 



.■M*   J.III JHl|«0*M>t ■•HiUWIWWM ■■r;.;;:Vr 

(-. 

-Qoniinuily 

^■(pv) c> 

l^-^'Y'i)^1 

Me .nuM, ill 11,1 

ir vp 

^b 

3,, 2 c 

pv(v.v).(v-^v v;v-(^)+ (^,v)-^     3_ä 

iaio.^ 

Slate 

^   at 

3« 7b 

3« 7c 

T 

^ T 

3.01;. 

j«! 
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*•* *^ni 

^ '-(^-Wv^^v/.v)^ I VI   » 

»4« -^(y:-^) 

ilmLIi^asiir 

K + v, in, Jo 

V ■<- ^-i)vrv; = L' 
—»h       ^e. 

-.„'ll, 

3.9c 

3.11b 

3, lie 

hf  this point, we havs obtained a i©t of partial dlfforsntial 

oi,|U(.rl'ioii;-i which rjovoi n Ihu motion of tho rockoT Mnitl synl'tjm during stondy 

and unsteady operation* Wo are now Interested in determining the stability 

of solutions with ©xponontlfil Mmo dopondunco^ but firöl' wo procood with tho 

selection of an appropriate coordinate system. 

^ P9l9,r,4lP
sltQ, SYgtQfn 

Tho natural coordinate system for rocket motors of conventional 

shape is a cylindrical coordinate system and hence the latter will bo uti- 

llzöd horu. Referring to Fig,, 4,1, we see that tne square of the elementary 

length is given by: 

{\e
%   - d**%-dr*Z +r*a >**Z 

4.1 

Non-dimensionalIzing, 

g  a 
K* 

r p~- .rfW»**»« e* = 4.2 

wo obtain 

ii d*X 
+•   ^X   +   r^de 4.3 
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wliich cMi'ib h1:. us   lo (■■X|-.JII(I  Ihv1 voctor oquul ioni. WM hnvo dor i vod prcvioii'; I y. 

In \Un ensuing analysis, It will bo assumod Hml tho stoudy stnto fsolutlon 

consists of unc-d Imons ion.il flow, <uid thon ihn ^olulion in unsto.-uly flow 

will coru-.lsl ol Ihrou dimt;irjlonaI perturbations superposed on tho steady 

state solution. It follow, that nil partlnl dor I v.ii I v>?;i of stondy st.rlo 

qikiirl i ll(js wilh rospuct to Y or 9 v.inlsli, while porliul dor I vnf I vos of 

steady stai'o quontltluü with respect to ^   become ordinary derivatives. 

Lottinc)  liio 'lUliscr ipts Z"; r   und    Ö     donoto components ol 

vectors  In  Itio ro'ipocl'l vo diroot loii:;;  tho conf i nu iiy oquutlons becomes 

i(^Va)    -    ^-     i(r-^) 4, A 

at 
Si; 

0 

Proceeding, wo obtain the equations for the conservation of 

momentum: 

(f^)+i^v^) 1   ii' 
^      dlft 

4.6 

g    pomoonent gLJteiMliMin 

ft(f V*'Y'V^p^Y*^   + fM't   +  ^ + ±fe) 4.7 

r 
3^ r r   *|c> ^ f' ^^ (A   ', 

Ja 

+ ^^tVA i 

fi vii 
Ji 

t+ lA '<• * - fe' f - 4 fl' 

%" 
■ 
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£ Coitiponont of Momentum 

'•^. 
' ah I 92- 

'   da 
v 

4.8 

:)ofm)onon'l' of McmorrKifn 

W XT 

d* ^ rzS 

'i,,') 

In considering th© energy equation^ an order of magnitude analysis 

nhows lh.it h^ IB constant throughout the chamber to within terms af the 

order of the square of tho local Moch number and hence from Eq» 5.7b It 

follows that  hs ss n^. • We will juGi'ify thlvi order of magnltude anala- 

sls In another section. Thereforei 

at 
t- ßh ibj* s.  ir-i 9p1     i /i i     i \ 

Wt may eliminate   *   by  Introducing Eq.  4.4 and we can el.Imlnate  hj   as 

^'•ows.    Since  Jh-dT   , we must a,so have   h^T'   and therefore 

-l  ^ +    (^-t)v^v^       "    Introducing 
the equation of state, "f1   s   J (£ ~ ll \ 

equationi '        r 
we obtain  for the energy 

^P'-T^M-Op.V/J^^y fpl„y + M   ^, 
4.10 

IM   9pi C     OP' I     J   /     r   \ 
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The ilropli-t dynamics yield: 

^ + v£t -^  f ^ ^ 
3* JA 

-- A^1-^ 

^2ir    *jk(yr*_Vjl;.] 
s* 

whllo thu ilropl.yl- st,i()ii.jtiori (,orii,il|jy  Is ,„:,.T|y 

R.  d '• Soparatlpn of thu yarjablpr. 

:H). 

4.11 

4.12 

4.13 

4.14 

4J5 

W© may separate tho variables in our system of  linear parti«    dif- 

ferential equations by expressing oench of the perturbcitlonn «s the product 

of fiinctlom; of tho coordlnatßs and an exponontitil   lirn© function.   After ex- 

amining purely arbitrary functions,  it Is found that sepfratlon may be achieved 

wbuii wo takn: 

Vr'   --  *r(.)M^i(9)e^ 

Ve' = fgfr) Wi)cll(e)es+ 

r    d9 

y^e' - > (») +M ü/s)esi 
1       f   diel' 

/l1 a ^(«jfH §(ejest 

p' »   ^i) t('-)§(9)est 

5. 

- - 
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Since the oxponont S9A+^u Is gonerally complox^ the stabjljty of any 

solution will (li.'pond on A • That Is, the solution will be stable; neutral 

or unstable as JV. is loss than^, equal to^ or cxcoods, zoro, Wo will deter- 

mine the conditions yiolding neutral stability, inasmuch as a knowledge of Hie 

stab i lily boundary ( A - 0) and tho un'ri-able side will be sufficient for 

our purposes• 

WQ note that although the porturbatlons are given as complex quan- 

tities; for the purpose of indicating phase relations^ only the real parts have 

physical meaning* Before solving the perturbed equations we refer to Ref. 18 

for the solutions to tho steady state equations. Steady state continuity 

nnd momentum yield , 

wher 

the gas flow rat© at any ststion, and 

5,2 

o 'fyfyi    represents the known propel lant Injection rate and {Jj"  Is 

p - i- vifyrf *ft%t 
wh 11 e m may a I so wr I te 

T  ~    I 

"A    ^1    "^   \ 
ritm*) 

y V. 

'5/5 

3.4 

Utilizing Eq. 3«81.) wo also obtain; 

F 
5.5 

Considering orders of magnitude., wo note that the velocity 

Increases from zero at the Injector aid to a max'mum value connected with 

the Mach number at the entrance to the nozzle» A solution of the non-linear 

differential Equation 4*11 (see Fig. 4*2) shows thai ,,,. droplet velocity 

Vjta has the same order of magnitude as Vg- and ^ . That is, V^ ; 

Vj^ and ife are each of the order of the Mach number. Furthermore^ tho 

deviations of p ^ ß    and T from unity are of 0(M'"). Up to tt-i ms of this 

r    - I 
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order, WO can thoroforü wrltoj 

p = f = f 
and hsnc© thoro follows from Eq. 3.2. 

PÄt ' v*,-^ 

13,6 

5.7 

since combustion Is assumod complotö at tho ox it of the chamber and 

deli'- M* ■ 
If we now take 

oil:. 

S O(M) 

"     $ o(i) 
To      dt 5,8 

and if the injector does not respond to chamber pressure fluctuations 

(as In a study of intrinsic Instability), then the droplet Equations 4* 

4,13 and 4»14 yield simply: 

■2; 

1 i. ")' H 
5.9 

It will bo shown, in our treatment of entropy wave Instability that a more 

complicated result Is obtained at lower frequencies^ since the injection 

system can then respond to chamber pressure oscillations. 

And now substituting from Eqs. 5»I Into the continuity Equation 

4.5j, we find for the left hand side: 

^f   i*   _ T^.   5.10 
fax   dr    *^ 8£ + i(pt)^,a^-^ 

WMW—1 WW  (MM 
IM«  »wijsmwwÄW»««« 

/0 ^r 

where the variables are not separated as yet. Wo will return to this 

equation presently. 

Upon introduc  Eqs. 5.1 and 5.9 inlo the equation for the 

.. 
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■—■ mm 

coniponGnt of rnomonliini. Eq. A,'/, and rearranging forms, wo obtain: 

1 k mum        »pw-fai 

x as i + ^Wt ^V^^r 
i:^     Ü sill 

The r and Ö components of momontum, Eqs,  4.8 and 4.9 yloldi 

i (f^ + lp^^]   + s[p + Is Pr 5.12 

ond 

f/-; v«ff^]Hj -*■ s[r+ f^ S I * 
%\5 

Expanding Eqs. 5.IÜ and 3.13 and thon subtracting one from the other we 

obtain: 

14 

This has the solutions 

5» I J 

and honce unless Cj is taken identicaliy ^oro, separation of tho variables 

is precluded. 

It Is of somo interest to see what happens to the vortlclty as a 

consequence of this last result. By definition, the vortlclty Is given by: 

fo4Y = v*V - LMA^ ae ' r'^ J y* 5.i6 

i. ^. 
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Substituting from Eq. 5.1 wo obtains 

s O 5,17 

^ d^ 

and thus wo üöO that the condition tlurt- onablss us to separate the verlabies, 

namoly   pQ-Vr >  ''' ^ cmiso'i  Hio axial  cornpononl' of  thu vofMolly to vanish. 

Return I nf] to continuity; Rq.  !3,I0; and  Introducin.j    ihy-p,*  wo 

f inds 

dn d^ 

fVr 

MO 

where S ni-i Is the separation constant, and wo also obtain 

r dir1'     ^        d^      -f    S nh ^ 
^ j.i9 

^5U 
n 

where   fl     Is the second separation constant.    Wo have thus obtained the set: 

ar 

f n1- 
n '..:' 

Equation 5.20 Is recognized as a Bessel equation so that the 

y\> -. 

solutions become respectively, 

/    (105 nfi 
1   i\r\ nO 

5.22 

5.23 

•as-nMee 



r .««(•—*—>»—...—•< 
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No constants noed appear ebovö ag I'hoy may bg convonlontly ab- 

sorbed Into the «--dependent factors, rhe actual solution Is obtalnod by 

summing ovur all combifuntiorn; of producls of oolullon^. Wo must satisfy 

certain condillonn imposüd on VV . First; V^ must not bocomo infinite 

at f ■■•    c); ond hone« W(-) (nusl' discord Hio second Bessel function. Further^ 

Vf must vanish at the cylinder wall where r* ■ I; and hence Eq. !3.1 

imp 11 es that! 

H ) *     dj M . o 

Since there are a doubly infinite number of solutions to this equation, 

5,24 

we 

@t S^U   represent the h ^oro of the derivative of the Bessel  function of 

order n, so that both subscripts of   Sv^An   ors u^d as Indices to indicate 

which of the solutions  interest us.    The first nlno zeros are: 

So»   »   ü 

SM   s    L84i3 

Sa\ ■    3.0543 

S^     -    3,8317 

S»i     ■    13.3313 

S%%   »    6.7060 

So 7,0156       5925 

Si|    «    8.5263 

S23  ■    9.9695 

The system of equations which must bo ooivod simultaneous y now 
becomes 1 

fifiD±LQ,MJ:bl 

Mon]enturr| 

i 

5(^4 + VJS) -t- i.(-i5^^ + ve
lS) 

+  S'nh 

1  dV 

?* J ̂
»^-nf^^^?) 

£HH»^+^) 

5.26 

5.27 

r 
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Momentum f 

-r-'l^-^Afe^"8 

linorgy 

A 
tit 

^{f-TWCf-O^Vi^l+i '/'' 
1 «. T 
A 

X +(y-i)^V«^4l = o 13.29 

Lot UD rovlow the Initial conditions at tho injoctor face for tho 

caiSiOf Intrinsic Instability studlou. At it*   0, 

V^ (O.r.e^t) s o 

451 (^r^/t j - o 

13.30 

sinco at th© Injector face there Is no production of gas, and since the 

liquid Is Incomprcnisiblo there can be no variation In propellent density. 

Equlvalontly, wo have 

13 
while ^(0) „ ^ ; ^(0).?^ , and  ^o) s i^o . 

WH will proceed to yolvö our system of equations by an iteration 

scheme, (see Ref,. I0)„ Combininy continu'ly and onorgy, Eqs, 13.26 and 5.29, 

and lotting 

X(i0 a (^-OAVi 
S 

wo obtain: ¥= 

A 
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Rearranging l.q.  3.27 wo obtain: 

d   /   f 

where we have takens 

s Z      äW  4. ^ u •3.34 

zro = v44"(i-?)^ +Aä« 
Wfi) = 

A^* + ^^ 1 
Z1^^  ^lA^ + ^i 

/ ^ Wo f T /^ ^4 ^ 
Our last equation, l;q. 13.2(1 hocomoo:   ^ 

K n 

upon -hiking 

s^r  + 
^rft 

5.36 

5.27 

For roady roleronco,  „„ repeat the new simultaneous set below. 

!5.38 

»fsl,hÜ 

H" 
" f¥>9 

M - du 

0 
We note Immediately that If SHIO 

K5 (l; which Impi los Vf ■ 

then the treatment reduces to a purely longitudinal mod© of oscillation, 

which has already bo©n analy;:ocl by Crocco and Cheng In Ref. 18. 

Lot us proceed with the solution of Eqs« 3.38. Rearranging the 

third equation and substituting it Into the firsts 

i(t)-("f)(Ä)--sXtji-^(v+Mt^) 
Adding and subtracting terms in this equation and also in the second Equatl 

5.38 above, we derive; 
quatlon 

• 



■——p*' — >-~.. 

I 

■"■■■■^M ('. 
., —K,-^,«. -tJ.^«»*'*jfefl; 

yii. 

fi,39 

a /1 
dl^'^ft 

■f VV H J MWB<««H        ^M 

^ 

■i 

V+ ^inu 
5.40 

+"    2 SnhU 

Tor convenience WG 

F (*) « 
C 

let! 

o 

p^ +• W) 

V+- M • 

5. 41 

and thon Eqs.  5,39 

W 

and 5.40 become} 

itr 

cfe 
t    515 

c5     /  ' 

sF -1- 2s^U 

s.-c 

5.43 

Wo may elImlnate B 

Eq.  5.53; 

t 

where 

by differentiating   Eq. 5.42 and corrbining It with 

(slH-^) D  ^  A(&J 

Since the 

s^F + S^[F-ä|"-i(j+£Vb)u] 

5.44 

5.45 

iyht hand side of Eq. 5.44 Is not given explicitly^ we 

will use Iho method of variation of parameters to solve this ordinary differen- 

tial equation. We obtain: 

^z -C^J^^ ^h^h^^ 
{?'+ S^l' 



29. 

Wo Can now substitute back  foe   /TU^-ü'j    from l.q.  [),'VJ,    TIK.TI  lirii".tr1ii ID;.] 

by parts and combining tsrms^  where hho .ippropridto mili.il rondliiorui 

are obtained from Eqi  5.31   l.e«,    f;; (o) = 0 and    Gr{'o) a fäßA    >Vo     ; 

tRerfi Is obtained: '        ^ 

Not Ing that 

wo may dlffirtntlat© üq. S.47 and substitute back Into Eq. 5.42 to obtain 

17 

B(i) 
^ft 

+ W 
A CV*.1. S>S^h 

CiSinhfJsT^ £ .f C,cojh{?^rh? 5.48 

n 

Wo can now uniquoiy dotormino thG constants   C,   and   Ca   by  In 

Toduclng the conditions at   f  » 0.   From Eq,  13.31 wo have: 

Y^)   =   W(o)  ^   o 5.4.9 



r.(). 

and hence simultaneous solution ol Eqs. 5.47 und b.lG ,i|- ^ -. ü yiolds: 

C a S /ih 
I- o 

^.W 

f? ■V, . o'V, 
+ S ^h K^ 

and now substituting Itiese results Into Eqs. 13.47 .md '../in, wo finally 

obtaIn: 

5.31 

f.     A-* r% 
5 ^4- iV\h    i ^€(&0 sinhf^H-S^ fi-lOdi 

h 

Wo may also obtain a solution for ^  by Introducing Eq. 5.'31 Into the 

third Eq. 5,38 as follows: 

■ 
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it Is clear that ("he order of magnitude of the Individual terms 

comprising ('.qs. Vii; ';.')>' .ind 'J.'J
7

) fl(>p(?ii(is on tho ordor of IIKUJII Itudo of 5 

and  5^ . 

WG tiro also Interested In determining the ontropy variation in 

the gas; since a knowlodgo of Ihin portui'bal loti will he nccov,,)! y in .ip|ily- 

incj tho boundary condition at tho ontrance of the exhaust nozzle. In dlmon- 

sional form vm  wrIto; 

wh Ich may bo non-d Imorin Iona 11y.Qö  to yield; 

and slnco dn= dl ^ this is oquivalent to; 

ft) 

13.134 

s, 'i') 

TS'   =   T '.„'H. 

and now introducing tho oquation of state 3*80, this becomes; 

^r p r 5.57 

|n order to separate the variables in this equation^ wo take: 

B]    =  6(%) ^(r) $(9)6 

and then Introducing EqSi 5.1 and 15,138; Eq. !3.57 becomes: 

I3 
fi 

ft 

!3.!i(i 

';.l)e 

dli 

And now, rearranging the energy equation; Eq.  13.29; we have; 

i r   ,  .      r 

%\$4t*Hp rVa^bll^ SlwJl-i 3.60 

This  linear differential  equation has the solution: 

ci^1 4- COrtSf 

5.61 

where the constant muot be taken zero; since the left hand aide vanishes 



v.'. 

at    J£    - 0.    RoarnviiKi i ii(), 

^jkl (./ 

which may bu  intogratod by part;, io ylokl; 

1 „   i 
\ i. ii 

U' 5.63 

Combining l-qs.  !3.S9 anc) 5.63 we have: 

" 3% v'/•? P f = -M rv* ^ + ±- resK ^ j vWv)tis 
Va  /o 

'.J)/! 

^ 

and now oxpandlnc] tho türm In brackotö, wo obtain finally; 

1 

V v  .1 + ^V^'^i^)^ 

6• Ibü Syf'n i rui Rat© Perturbati on 

In Soction 3, it was pointed out that a relation botwoen the 

burning rate and the other quantities would be roquired. This relationship 

will be derived bo low. 

Wo recall that a conditioning process hakes place during the time 

lag, and honco Its duration Is a function of tho phyr.ico-choinlcal procossos 

taking place during the tlmo Interval from tho Instant of injection to the 

instant that combustion of the given propellant is initiated! Since the 

•iio.idy shvfo comburrMon rate has an arbitrary axial distribution; tho total 

tlmo lag will in gonorvil bo different for different propellant elements. 

Following Crocco and Cheng, the total time lag will be taken as the 

■ 
■ ( 



5. 

r-.iim of .i -jpocc varying iinjcn:. i I i vn part f,;   ,  and a timQ and Space varying 

sensitive part f • 

whoro T Is ü function of Ihn intoraction index characteristic of the pro- 

pollünt combination. In Ihu iibiiuncc) of mixture ratio variations, Iho rale:, 

may bo related to the pressure by taking 

, '     L P J 

whoro   T    is the overall rat© of the conditioning processes!    Now,   intro- 

ducing Crocco's definition of the sens it Ivo time  iag; we have: 

/i 6.3 

where td    roprosonts the quantity of nnorgy required to Initiate burning 

at station S ; P ,9     at time X ; and the integral must bo evaluated 

following the motion of the particle, liquation 6.3 may be rewritten in the 

fo11owIng equi vaIent forms. 

fi f 
6.4 

r I 

f.Kp 
f l/lr\&\V(i\r\9>)'] Ea s EA.    

6«!i 

whoro dx denotos the particle path, and 5 ; K } X.   clef Ines the location 

whoro the particle enters the sensitive phase. Wo note thai ....cording to 

the definition of the Lagranglan derivative, we may writ©; upon introducing 

Eq. 6.1: 

*   • "m- 



54 

dt 

dir 
ii 

dt 

a ^J^) +  tW W$(0)e v! 
6.6 

1 r"    clT6 

Introducing Eqs« 6.2 and 6.6 into Eqs. 6.4 and 6.5| wo have: 

lT ? [i'ft'),Stielt1) ^ i | + ^p'^r'lt'^'ft'l t1]] k 

^ Ect a Eä,(^J 

6.7 

f [^,
/r

t(^9i(%,)(t
,M] ) \±%^rH®H^l 1     6.8 

whoro  X (hy  Is given by: 

2: 6.9 

«' U^Wv^rH] 

Since the steady state solution Is one-dlmenslonalji wo have: 

t 
■t-T(i) 

f [a'lt^t'ldV -   L(i) 
6,10 

and furthermore,  since  in the steady otdlo ihero  is a negligible spatial 

non-uniformity, wo also have     f [z'fi'lj"!' j « t = C(wsi  Hence Eq. 6.10 

becomes: 

|. riz) * EOL(*) 6.11 

.. ;" 



and 'low D]. G.7 may bo written: 

i-tiWM) 
r U + %P'[«'(+'),r'He'int'l | di'" f^ 6.12 

Noting th^  tfZ.^^tjti f f^) + T ' ^^,0/]    wo 

may nogloct '■.ocorul ordor tin'tns In l.q. b,\2  to obtain: 

This equation reflects the change in the sensitive) Mmo lag from 

Its steady state value T(?) for a particle which begins burning precisely 

at time I  and station % ? f   , B     after having traveled through the 

chamber with velocity  V* [^ (f) tr*(^), t9'(f), t1 j|  and having been 

exposed to pressure perturbations  p1 [^'(t1), T^t1), Ö'ft1)^ t' J - 

Differentiating Eq. 6.13 with respect to i: and neglecting higher 

ordor terms, there results.* 

/ 6,1 4 

a f ( 

or equivalently, 

6.15 

It should be emphasized that In writing those equations; wo are 

dealing with a specific particle which enters Its sensitive time lag at 

time irltY^r,&,•(:) (which coincides with station f ; K ,» X) and which 

burns precisely at time x ^"^o «nd of the sensitive time lag) at station 
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2"     )   f    ;   (?     -    Thus,   in examining Eq.  6.I5;   it   Is < löai   I'hat tho 

prossuro  |)I,M 1iifl).ii Ion   \'\ io ho ©valuatod <rl   on  uppor   Mniil   ciri-ospoiKJI nq 

i'o lip.,) in'.lnnr of  biiininc), .ind rri .1  IOWCM1  limll  lopi'nnonting the beginning 

of the sensitive tl.iio locj.    Wo will now .set« why Iho ',|ii(mlily '-'I    must be 

known  if  wo are  Intorestfed  In determ I n I ng tho burn Inn i.rit; poriurbut ion 

which con occur' at a glvon   locution   In tho di.unbor „ 

Let   irvj-   denote tho propolldnt  injection t<.rl;,'; and   /^k    tho 

propellant burning rate^ and now consider  Iho fraction of  injoofod pro- 

pel I .in hr, burning   In unstoody stcito botwoon stations   f:   and H-l-ti-i^    ; 

r    and   r t-cir    ;   0    and  0 + 010 ♦   Call thlsfrachon  S^tand as- 

sume I'hat tho I'otcil  11 mo l.iy   i-^ ('4,^9,1;)   which this fraction experienced In 

roach Ing    Z , f   , 9       Is tho samo for all   partIclos or olomonts within 

the fraction  imb^^^t).    Now this fraction was Injected at time 

"t* '^i (%tr,^)t)        as a fraction 6^1 of the Injection moss flow rote 

ft\{ .    Then since fho fraction which burns  In  Minn  c^t    was  Injected  In 

CJ("I>TT/j   it  Is cloar   Ihat ilio censor vat Ion of mass yloicls: imo 

and1 hone© we must havo; 

^L^-T^i.r,^) di 
{\r^M \ - lM\>{\ffi)ii 

0.17 

since aithourjh "ti   varies with location, it does not vary with time. In 

dt tho steady state, &£ vanishes and wo obtain simply; 

Svf\ l    *     ^vu  »   conjf 
6.18 

In an  Invost igat ion of  Intr I ns Ic  i nstabiI iIy, the i njectIon rate Is constant 

and then we also havo: 

6.19 
irtlt    =      (f^t     «      ^^ 
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|(  we Introduce  cp   eas ("ho  Instantaneous rat© per unit volume ol 

which gas  Is producGcl at ciny point  In the chamber, then 

^i>(^r/Vf'J -   r4>(ifMl JiSdrdi 
6.20 

by del IniI Ion of the bun 

ytacidy st^ic;^ this '..unc 

and ^fdi ,   F and p 

Its burning rate Is: 

ling njto of tho froctlon con:;, I dor od. In tho 

ractlon would have burned between r/KrHons Z 

-\-dr   ,   Ö   and 0 fc/$ , and again by doflnltlon, 

and now combining Eqst 6.17, 6.19, 5,20 and 6.21 we find: 

6.21 

6.22 

in words, this equation says that at a givon instant of time z   , 

the fraction of Injected propel lants wiiich burns at a öarticular location 

2 f f  f 9     Is a fund-Ion of that fraction of Injected propellants which 

burns In stoady state at location ii , T j   9   ? 'ü^  of 'l'hö variation in the 

time lag which occurs,; as a result of the pressure fluctuations during the 

coordinating process, (see Fig. 6.2) 

Separation of the variables enables us to write; 

<M^r.ö/"tJ =   &(*) *   iU^^i^i^e H 6.23 

where «f3   ^     r-(^) 

and thus Eq. 6.22 now becomes; 

t ^{%)j9clr(^   +   ii^) r t^r) cjfoj ^t rd^   w 6.24 
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Let UG now rolato tho urci olomoni'   pdocif    whlcli  is the steady 

state aroa olwiont,  1*o tho arou olomonl-   rdodf   portlitönt to unstoady opöra- 

Mori.    Introducing the first two EcjSt 6.6; we may write"! 

dr' 0  V* IV/'Kö'Ht'«] 
Ja i,.:/', 

whoro   0 , ft>   , Ov     ure tho coordlnatcss of tho point of   Injection.    So» 
PM 

Fig.  6.1   . Noting that   ro S T  ; wo may neglect hlghor order terms and 

wrI to: 

Replacing   V^    by the separation variables given  In Eq.  5« I we haves 

b"  ^   U»*        — 

/o 
6.27 

Now xl^j  Is actually given by r-q. 6*9, but for the purposes of evaluating 

a perturbation; wo may takes 

f'fzO a  "t -     -«»— 6.28 
Vit (»") 

and hence r-q. 6.27 becomes:; c1 M' 

r- r 
s-tf^ ^taAo"5^' ^(?'9 

^r)$(9)es-fcn^)e.~. d^ i    6.29 

on neglecting second order terms. On Integrating Bq» 6.29 by parts, we ob- 

tain, correct to terms of 0(M); 

s1 L ^      ^ 

?r rift* C  1 

^(*() 
6.30 

Noting that^js^. and utilizing Eqs. 6.6, wo may llkowiso show that: 
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39. 

r   d9 sl" 

ff'  Ja' 

U       no ß 

clF=d r 

^ 
^ft'J 

Dlfforentlatlng Eqs. 6.30 ami 6.31 wo havo: 

s*- 

«.d.^^.fY-f-e'i'&l^öe" 

6,31 

G. V. 

6.33 

and rearranging Eq. 6,30 givess 

r 6.34 

Taking the product of Eqs. 6.32, 6,33 and 6.34 and neglecting 

higher order terms, m  find: 

rdmr ~ f 
l       To 'A, 

TWar1-      r^(^ar       ^1™^^ 

6,3!3 

n 

10 % 

and then Introducing tho right hand side of Eq. 5.18, wo final I 

rJodr « 
y obtains 

St I '^^^^ft^mm^ 
Now Introducing this result hack into Eq. 6.24 wo find: 

dt a^ 6,37 

s-1 

^^,9,t; 

To    ro 

di 
-I I"; 

«: J*' 
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40, 

expanding,  ellmlnntlny M.ihw   urdur  h,nv. un.l fogroiiplng, 

2|(i)+Mi(&)estcl? 

To 1 

6.38 

& 

Turning our attention;  wo procood to an H 
exam I not Ion or   j^      as given by 

Eq. 6.13.   Prom our separation of the variables, wo may wrltej 

6.39 

p1[^0/t)/K()/(),t-T{)] S^ri( %k()l$rx( He^'^ 
^        i-      J    ^      J -'"L       jv 6,40 

Expanding each factor into a Taylor sorlos, and neglocting products 

perturbotions, wo obtain: 

Terms 

of 

6,4 

+   hiolier oriar   fe»"mS 

And now substituting  Into Eq. 6.15 wo havsi 

ft i^m' % m-^mk^^me'1 
i 

a 

6.43 

Thoroforo Eq. 6.38 becomes: 
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41. 

r o ft      « 

Lit us now Intfigrats each term from zoro  to the appropriate 

Upper limit, I.ü. 'ä or 2  as the cast? may be^ since there 1:5 a ono~to- 

one correspondence between g and 2  over ihoir respective paths of in- 

tegration when the time Is held fixed» We write: 

dli1 Jo    dt* h d& 

si / 
%       % j tu 

'0 da1 

! 

'.ting that  Vä{O) » O  - 9.(0) we obtain: 

(Ml  ^^  

jo  p    {     %        % 

From a Taylor expansion; 

11 • •' 6.47 

and hence by analogy with the ono-cllmenslonal treatment in Rof. I8; pages 

112-113, It may be shown that: 



r 

■io  Hiat on   intt'oduclnn the Itittor  Into l-'q.  6.46 wu find that tho factor 

may be eliminated.   Hence, 

«M        ^       W»——        '-        «MB T ITS /        W* (       "T"l ' 

12. 

^('■)i(&)e^ 

'i' 

+   # (^ ^t (%) i 7L f& ^«'J 6 i '* V»t(^ ^5 

4-    Jk 

!   ^ ^,(»0 o f? ij v^ij 

cv. 
t     r<> Vo da1 

-." now aft. mto^H», by parts and ana(y2|ng ^ ^ of ^ ^ 

the resulting tonns^   It may be shown, as  In Ref, 

terms of 0(M ) or higher, the remaining terms ares 

8,  that upon discard I ng 

%     fd1) 

*■  S JS d) \ 
S    Ja 

['-e sfM 23(v)Ji 
dr 

i3 fi-e ff^t) 

when  It  Is assumed that 
dl 

6.130 

T.  '    Kit  '   ?9fö . tW - oO)    *'* 
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'/• &o.J.,M.1:J,p.n .^xllQigjJM 

In Soctlon 5, wo dürlvüd exprosslonü for fl~      ,    —Z&', 

--T^- and •-**-'      which are given respectively by Eqs. 5.51, 3.52, 

5.53 and 5.613. We must thoroforo examine the or dor of magnltudo of the 

following Integrals which appear In the aforomontlonod oxprosslons. 

1 
"- 

oosh 
7.1 

Where fc ; r ^ G" , and U are defined through Eqs« 5.32, 15.35 and 

5.4!. Restricting our attention to the case S- 0(1),  S^ - 0 (I), 

an involved form by term analysis shown that for the purposes of evaluating 

the four Integral! In 7.1, Kp , ^F , ^G and VU may bo considerably re- 

duced to i 

^(*0 « iM i^Iü) .Z^J ^jJ 

Is tho first term In Eq. 6.50. 

All forms which do not appear explicitly above; yield contributions of 

0(M ) or higher after Integration, while those terms which are retained 

whore 

-   : 



r 
. 

i 

•. 

yfGldcg,rlribullor,Sof 0(M).    Fupfhemor©,     QV    ,   VU ,   ^M 

are also each 0(M) and hdnce we may writes dlfc 

<pQ  .^—  s^h 

whll® examination of Eq. 5.63 shows 

= 0(M) 

0(M) 

^ S f S" hh 2 -}-  o(M) 

7.3 

2» + S J^ 2:  4- 0(1 

■hat the entropy form Iss 

s the zeroth approximation, correct 

% 

This suggests that W) take as 

to forms of ()(l)i 

ÖJrJ 1   ss  COshfs^-f^ih ^ 

s 

7.4 

7.5 

h g 

V5 
0 

Ö 

and these may then b® used In the evaluation of those terms and Integrals 

yielding corr'T Ibutlons of 0(M). 

Wo note that Eqs« 7.5 constitute an exact solution for the spoclal 

caso of wro Mach number, since In that case, there Is no combustion and the 

equations coincldo proclsoly with the acoustic solution, if wo replace the 

exhaust nozzlo with a closed end. so that there Is no oufflow, then -—sl-^ 

must be zero at j2 ~ 2,0 = L  . The phenomenon Is thus reduced to the 

classical acoustic oscillation In a cylinder closed at both endSi On settln.q 
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i 

SstUJ arid     'MV^^ s^-i-S^nh L "O we obtain Iho 

©I genvalues 

uJ =• ^ir1 

•i- Snh (m« 0,1,2.,3 .■-.)  7.0 

which are characteristic of modes of acoustic oscillations In cylindrical 

chambers. Since we have taken S^twJ , thosö c.ci Nations muät be neutra 

with well-defined frequencies given by l.-q. 7,6, 

If combustion takes place, and the Mach number la then small but 

finite, two modifications occur. First, terms of 0(M) must now be 

considered in ovaluatlng tho pörturbtitlons, and furthor, the boundary 

condition at 2^2^ for neutral oscillations Is no longer given by 

^i €, B 0 , but rather, 

This relation was derived by Crocco in Ref, 14, and h the 

7.7 

extension to three dimensional flow« of the general solution obtained by him 

In Ref. 5,    The coefficients [ft,  Co and C-are complex functions of the 

frequency, mode ( S^h ), and the nozzle geometry, and the perturbations 

at the nozzle entrance must bear tho amplitude and phase relationship 

given by Eq. 7.7 If neutral oscillations are to be maintained, We stress 

that, In our case, we couid not legitimately take  «*--&»■   M o (closed 
Yo 

end) as a boundary condition even if terms of Ü(M) were neglected in 

Eq, 7.3, Hence, since we have a new boundary Condition at  if * He, 

it Is clear that the values of UJ for neutral oscillations must now be 

different from the acoustic solution, Eq, 7,6, 

Leaving LK)  for the moment as ■•"ho unknown eigenvalue to be de- 

termined later, we will now set down the expressions for the perturbations 
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which will bo used in conjunction with Lq. 7,7. First m  note that: 

KW (&0 Ä 2. We 
7.8 

^^4e 

,^ib vU(^e) r. 5%^ 

Ü du 
"1 ^* s  aal vi , 

S 

where these results are obtained as a consequence of Eq, 5.6 and the fact 

that combustion Is complete at 2f ■' 'He   so that 

Lotting  S * CUJ    (Investigation of neutral InstabiIlty); In- 

troducing Eqs. 7.5, evaluating the Integrals at an upper limit  i s Ee ^ 

and making use of Eqs. 7.8, Eqs. 5.51, 5.52, 5.53 and 5.65 become: 

-2V «e^ 

CoSh\l 

1. 

h-T     ^e + uu 

UJ 

.7 

>p        jo 

LWT^) 

IAJ 

s^h 1 

' /o 

^e fi^j    (^)i'      y^i') s(V\^"(i.41)^1 



^v\^ 
i-co^J     * Zd   -f    {    n u        \   I— 

iz 
i—i 

z e 

te 

wr 
^G(a') sinhf ^(i-s»)^1 

f   i L'nb c pe^u(^) ^'^^ ^^O^1 

•17. 

7.11 

i 

1^6^ 0) 
(^i)    V^ ^   ,L   s^f^^ 

iA) 

d^1 

ri 
4-    \i 

v te 

*' ill 
2,' d* 

7.12 

^ 

wh©re as a consequence of Eq. 7,3. 

r&(.) a ^ „        W^v    ^ 

7.13 

S 

1: 

0Ul ^^'jaojhf""^1^ 

iru^) a   i w(^) co.hr1 e^ 
UJ'L Li 

UJ 
and i V fi •j-uj^+slih s>s^h 

W© observe that when   UJ>S^h then,    f     ^     =   C^^-S^^ 

')ntl ccs^r-1   = c^fuj^-sVh 

jl     -1- ^* 
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Tho rosult of Ih hi fir1.; I .IMIMMUII i;. correct up to terms of 

0(M) ptüvidiMJ that 5 <and S/\\'\  are 0(1). In prlnciplo; one could pro- 

coed with additional Iterations^ howovoi'; iho noj- rosult would be to 

Introduce tormc of 0(1^1")^ a refinement which Is not required if the Mach 

number Is sufficiontly nmall; In tho neighborhood of 0.lo; sayt 

The stability problem can be stated OK Pol lows: for a given 

chamber geometry, distribution of combustion, and exhaust no^lo,, will 

an arbitrary perturbation of tho steady state conditions bo amplified or 

damped? 

But, the sternly state dir.tr i but I on of combustion Is represented 

by VW*)  since cji ■ Si? ,  while the unsteady effects of combustion 
it 

aro represented by the distribution of the sensitive and total time lags 

T/^l and T/. (f) » and by the interaction index 71 » Hence, stated con- 

clsely; for a given V^ , t" t Tt f y* ; ^ , C and TL , will ar- 

bitrary perturbations be amplified or damped? 

Mathematically, the answer to this question is given by analyzing 

the real part «A. of  S - .A + (,'Jfc ,. in practice, we need only 

determine the neutral condition under which A. changes its sign (J\.  « 0 ), 

the stabil Ity boundary „ If ' V^ , Ti , i/t ; ® and C are fixed, 

neutral conditions will be possible only when a certain relation involving 

X     and the interaction index ^t is satisfied, and further, these neutral 

oscillations will take place with a well determined frequency. 

Equation 7.7 represents the functional relationship between the 

three quantities, and since It Is complex, it corresponds to two real 

equations» If for simplicity we assume that the sensitive time lag Is 

the same for all elements, then we have two relations between the three 

. .JA—i: 



49. 

M'^ntlNo'-,    ö   ,  9h   niirl   UJ   , whore     ci    |s iho critical  VOIUQ of the 

sensitive i imo log.    This moans that for a given value of    ^b    ; hq.  7.7 

will  cletermino the values of the time lag   ^    and tlio frequency  ^7    for 

which noutrul ofjc11 lotions can be obtained.    In other words, Eq. 7.7 ropro- 

sonts the character Is I tic equation for' the set of eigenvalue'    J     and 

tu  .    The most convenient procedure, however.  Is to prescribe he value 

of   uJ  und nolvo for Itio o I gen values  OV and      ö   compatlb IO with 

neutral oscillations for that value of    OJ   . 

Now  introducing .Kqs.  7.9, 7.10, 7.11 and 7.12  into Eq.  7.7 

and i ntroducIng the notation j 

c L; 

Gc 

Uc 

us 

Vc 

Vs 

% E(ä') coshf^f^-B1) dz* 

£fi 

%0 

si'/ih^ 
inwMu^l.^»^ 

^'ds1 

. 
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wo ob tu In; 

6.3 

whoro Y)-,      'Hid n-i     aro complox functions qlvon by; 

K3 J£(|--^a) + 
<B^f'^-MC\/, 

(i." 

"1. 
*e1   c s^r^e. Ci-4 

f A "-U^5^h)v^ ^ jBOu 

+■   C<AJ L c   4- 

Oii / 

00 

UJ     -J 

[ r^^ A 4   -^ I 

(Al      J 

i r"1 

- f '(V,)V3  4 [w^-O^-f,.,)^^]^ 
1 l^1 l 1_, 

1 er 

UJ1' 
Jk R. t r %, ©Snh (lAJ 

n .i 
^^ Uü% 

^ R c 
lu 

1  S^iy   + 

•^'S M9 

ÜJ 

^e 

/Ä e 
! 

c^ 

S^h Vw/c« 

i 
^     J^" 

+ 
Vj, 

* 



Now, wo have demonsf rated hhot nv_ and h? arc tin i quo I y 

dötermlned one© wc> have spec I flea the rocket chamber geometry, the 

distribution of combusilon and tlu» oxhaust nozzle göornotry. Hone© 

Eq, B//  Is the final form of the characteristic oquatlon and may be 

used In the study of thu neutral stability of a given rocket systemi 

Lotting, 

0 '    ^2 T^ 1^3Re. - ^ **• Re. In 31^ 8.,l5 

wo may eliminate   f/yL   from Eq» 8.2 to obtalm 

MM 

The trivial solution a>S ■ 0, 2Tr34"[T.M, |s discarded, and 

wo find that the solution is given by the simultaneous sets 

8.7 

CoS(jüS -   ^i '"'^t. 

q^ + cu*- 
Co^ A 

and hence. 

UJ 
A + ikTT     (K-O/^M, ) 8.8 

Having determined one of the eigenvalues, wo may determine the 

other by substituting Into either of the equivalent form's: 

% 

?l 

■ 

. 
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r 
And thus we have solved for th© two eigenvalues vl und d        , 

WO note that when the rates of the physico-chemical processes 

dt?puiid on tho inlxturo i.rlio, another Inir.r/iclion Imk'X CA !'.!■. .MK! .1 men) 

complicated form of the characteristic equation Is obtained. In the treat 

ment of the entropy wove Instability analysis, It will be seen that 

^q. 0,2  Is a  special case of a more general relationship Involving both 

pressure correlated and mixture corrslated effects. 

e 



S3. 

:NTROPY WAVf: INSTABILITY 

9-   Biiiiiila)iiyJüjV£Lj;.nüglLaoa 

in the previous sections, wc? woro concerned with an Investiga- 

tion of transverse modes of combustion Instability, in which the coordina- 

ting iTiöchüniGfTi depended primarily on rho presence of transverse pressure» 

waves. Although entropy terms were considered In that analysis,, which 

cerluInly InfIuences the resu11ing magnitudo of the Interaction Index %^ 

and the critical value of the soiuiitivo time lag ö , the Inntabillty 

Itself could not be attributed to the presence of entropy waves, because 

these waves must travel down I'he chamber with the speed of the mean gas 

motion, and hence a consideration of the tots I period Involved indicates 

that they can yield instability only at intermediate values of the 

chamber frequency, i.e. 0(M) < uü < 0(1) . Since the derived frequencies 

were of order unity and, furthermore could be correlated with an acoustic 

mode, this would imply that In our previous analysis, the responsible 

agent must be of an acoustic nature. 

As we pointed ou+ in Section 2, in which we discussed the status 

of the theory, entropy waves may be formed in either of two ways, and if 

both mechanisms exist simultaneous1/, they will reinforce each other. 

Per example, If we are dealing with a monopropellant motor, 

entropy waves can be produced directly by chamber pressure oscillations, 

since neighboring propellent elements will combust to a final temperature 

determined primarily by the steady state mixture ratio, however, because 

the pressure is different, the two sources of gas will each have a different 

final entropy. At any instant of time, the distribution of excess pressure 

In the chamber is wave shaped, and hence the instantaneous distribution of 
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entropy production In hhe chambei llkowiso fo^ms u wavf-^ and Ihl.o wcivo 

travols down t'ho chumbor and reflects pressure WAVOS at the nozzle ox It, 

Thus; a closod loop now ox Ist« and yields a mochanlsm for combustion In- 

stability^ since tho pressure waves will procoed to generate now ontropy 

waves. 

If wo are dealing with a I) I propel I ant rocket motor, mixture 

ratio variation!; may be the chief cause of on I" ropy wave Instability^ since 

at these frequencies; the Injection system will respond to chümbor pressure 

oscillations and can produce off-ratio mixtures because the oxiduor and 

propel I ant lines can respond differently. In this case; entropy waves will 

be produced because tho combustion temperature will bo different for 

neighboring sources of gas. These entropy waves will travel down the 

chamber will) the mean gas velocity and will reflect pressure waves at the 

exhaust no^lo which again form a closod loop. 

The total period will depend on the sum of the entropy wave 

travel time downstream and the pressure wave travel time upstream plus 

whatever time Is involved for the propeliant element to reach the combus- 

tion front« (See pig. 9.1) 

In the following sections; we propose to investigate combustion 

instability in the Intermediate frequency range as it is caused by entropy 

waves. We L,<a|| therefore consider the effect of mixture ratio variations 

as might occur In a liquid bI propel I ant rocket motor. For completeness; 

we will also consider the possibility of obtaining entropy wave instability 

In the absence of Injector response. The latter may bo termed Intrinsic 

entropy wave instability. 

In Section 3; we derived a set of partial differential equations 

Which are applicable to a generalUod study of combustion instability In 

liquid propellant rockets. These are repeated below for convenience. Wo 
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have os fot lows-, 

t; + vHrt) - + 
Conservation of Manonluin 

9, 

9,2 

H .(^/r/y)tv*.^^Yv^(>^/)-M9- 
atLöii^JLilute 

4 T^ P* . /»»(Rn 

llCQ.aiet_S,tiaqniflti(ffinllMtel.RY 

3t* 

9.4 

9,5 

9.6 

As wo have qlready stated, entropy mvo Instability Is essen- 

tially a longitudinal phenomenon and hence the following treatment will 

be ono-dlmonsionaU Wo will now lot our reference length be the chamber 

length und we take» 

7sL*v»      {. SiÜ ;   ps4!     j.i*  9.7 

/• />o* C,*     ci» 

/TCo*        vd^To"        -=T 

\ 
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ie non-dlfrion9ioiia| prj'jülions ihen becom©! 

- a^^V/) 

1 2. 
J   3 

(fv7^^ + |-.^vlY,v^ 

9.1a 

9.2a 

9.3a 

?"[■ 
oj 

9.4« 

»■t- 3t il ie(v-v{£) 
9.5o 

dnts 

at 
o 

2     ^ 9.6a 

And now wo proceed as before by Introducing small perturbations. That is, 

each of the dependent variables will again be represented by the sum of a 

steady state space-variable and a time-dependent perturbation so small 

that forms higher Hian those linear in the perturbations may bo neglected. 

A superposed bar denotes steady state and a prime denotes a porturbatlon» 

The steady state and perturbed equations follow directly. 

Mass 

'd 

kw c|> 

l+aVr'Y-^ 

TiiPÄ 

%) 

9.|b 

''.. I. 
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,': 

.Energy 

1   v   ^t 52  ' Y   si 

p VT 

(I* 

^V 

9.2b 

9.2c 

9,3b 

l   ^   V   ~ j   -    -   £|   -9(^-11^) 9.3c: 

9.4b 

,9.4c 

Drop I at Entfiftjpy 
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The foregoing set of ordliwy tsnd pnctial difforontUil oquations 

which govorn the ono-dlmünslona! motion of the rocket fluid system during 

steady and unsteady operation, will bo utilized In studying the stabil ily 

of rocket motors In the Intermediate frequency range where entropy waves 

are operative In producing combustion instability. 

10.  ileiHÜ^ÜmJ^ili^^ 

of 

In order to separate the variables in the governing system 

near partial differential equations, wo take: 

V' = P(i)e%i 

., §(2)est 

= V('a)est 
P 
cp 

;l 

0* 

6%. 

Substitution Into Eqs. 9.1c and 9.2c yields: 

,Q.9.atJjiy.ltx 

^*iir*i)*^*-^-di(f^) 
imsilm 

cLv (ptv^^il^v^tv^)- -^ 

^ 
/i v ^V^H-V/S 

10.2 

10.3 

. 
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These» oqufttlona «ro vory similar to the results that would havo boon ob- 

tained by sotting  SwiU ■ 0 in Hqs* 5,26 and 5.27. Before substituting 

into the energy Equation 9.3c; wo noto that It may bo put Into the form 

given by (fq. 4J0 by introducing the equation of state^ i-e. 

9 
10,4 

1 rf^^i-JM 
Unlike the treatment of transverse waves In which the mixture ratio was 

held fixed and as a consequence hß« was Identically zero, the variation 

of mixture ratio Is now an Initial condition given by Eq. U24; while an 

expression for hjis is given by (:q. B29. Accordingly; the energy equa- 

tion may be written In the following form upon the Introduction of EqsJO. 

and (329 into Eq« 10.4. 

ft di'  j    » 

W© note that unlike Eq» 5.29 this equation has a non-homogeneous term. 

We will return to the energy equation later^ and now lot us proceed to 

th@ equation of droplet dynamics. It Is: 

y^  d| -f (s^ g +»/j * Je 
and has the Initial conditions at E = 0 

10.6 

I 
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^.) 

Equation 10.6 has the solution 

1 e 
, r K   (^   Ali 

^Jf. 

:,!. 

A^^')£Cl+Jt,{8 ^'^Uco^, 

and applying tho boundary condition       ^(o) ■• h« 

tho constant to obtain; , 

On  Integrating by parts, the first term yields 
I1 dk" 

wo may olImlnato 

fV)efHji)i^d4l. *mji>. rf*^*ite 
d* 

where we have made use of the condition £j(o) -. O  • If we take: 

diJ o(0 y& ^ o(M) 10*8 

fo    dE 

then the second contribution above becomes of 0{M2) and may be neglected 

so that: 
K 

'0.9 

correct to terms of 0(M), and where we have not yet Introduced Eqs B 22. 

The Initial conditions at the Injector face may no^ be written^ 

n 10,10 

These conditions Imply that there Is no production of gas at the Injector 

face and that the liquid density cannot vary at the Injector face. 

Tho following treatment will be seen to parallel that given 

for transverse waves except that S*h Is taken equal to zero. Com- 

bining continuity and energy, Eqs. 10.2 and ICü and letting 

f 



wo obtainj 

d / ^ ^ 

(J^l    ^ ^ ^o da 

I0.I2 

On foorranging the momentum Equation I0.3 and taking 

10.13 

wo obtain 

+  s ^ a.   -   S 
f—j 10 J 4 

wri te: 

i / a 
dal 7« 

Adding and subtracting terms In Eqs.  10.12 and 10.14 we may 

/    V3 

+■ S W 5 W-^J 0.15 

fjvi + w) ^(|r~y)-s(v+Z)   ,o.,6 

For convon!oneo wo lets 

iJ 

*o Y) 
'f' 

and then Eqs. 10.15 and 10.16 becomei 

-, + W 

E('a).(\A/-X 

F(4)=(y+z 

t  ^ A »-sF 

0.17 

0.10 

0.19 

   ■g»"- 
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Wo may eliminate Bfa) by difforontiatlrK) L'q. 10, IB and combining It 

with Eq. 10.19: 

d!A - sM = X 10.20 

whoro 

A  -    S f . s^F 0.21 

Since the right hand side of Eq. 10.20 Is not given explicitly, us© of 

the method of variation of parameters yields: 

which may be compared with Gq. 5.46 after sotting  SwV\  « 0 In the 

latter. Substituting for ^(ä1
) from Eq. 10,21, we may integrate Eq^ 10,22 

by parts^ We make use of the condition 

E(e) « W(o^XM - Yi.V^JM «HP i m 

S     [ li/o 

which may, however, be «bsorbed Into the coefficient of     5m vis £ 

and then wo obtains 

A (a 
Ä 

4- ^ jo   F^^-1) cojKsfVsOoli1 

Upon differentiating Eq» 10.23 and substituting back Into 

Eq. 10,18, there la obtained: 

JO » 

■.» 

■ ' - 
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Let us do+ermlnö the constant^ C» r,,>(i Ci. by Introducing the 

Initial conditions ät H- « 0. From Eqs. "0.11 and 10.13, th^ro Is 

obtained! 

7(u; =0 10.25 

and honco simultaneous solution of Eqs. !0«23 and 10.24 at ä ^ 0 

yIoIds: 

C, s O 
10.26 

■^ ^/?£oV^z J(^) 

and now substituting these results Into liqs. 10.23 and 10*24 we finally 

obtain; 

I + 2 ^/l,^1 K^J 1 jVnhsl      10,2? 

T s L* y F^1) s^hs^-ftOda 

and 

10,28 

/Q 

These two Integral equations will be used in the solution of the problem. 

We must also obtain the equation for the entropy variation In the gas 

boforo we can write down the characteristic equation for the chamber. 

From Rq. 5.59 we have: 

> 

i 

« 
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0.29 

Rewriting the energy equation 10.5 we have: 

i 
de %-TfJ*^f *f tr* iWH^-t^10-* 

U%±   + M(w)S-J^W) i(p) 

ntogrotlng Eq. 10.30 und combining the result with Eq. 10.29, 

V6 

V     /0  '" dv 
s 

10.31 

1 

so that upon expanding the term In brackets, we finally obtain 

I      10.32 

J 3.' ■'0       «It 

14?1 

MHJ ( 
/0 

-3 "^ / 

Ja' 

lore for one-dlmenslonal flows 

S M) s   6^)<S 0.33 

11 • The Burning Rat,» Per^urbation 

We will now derive a relation for the burning rate perturbation 

when the mixture ratio osciliateD. Following Crocco and Cheng; the total 

time lag fU Is taken as the sum of a space varying Insensitive part Xt a 

and a time and space varying sensitive part "f • 
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Ti(z,i) =   T.C*) +   Tf1(tj 

whoro T Is a function of the Interaction Indices characteristic of the 

propellant combination. The interaction Indices may bo discussed In terms 

of the functional depondenco of the factors controlling the rates of the 

conditioning procossea. It Is expected that the conditioning processes 

Mill; In the case of a bI propellant rocket, depend to some degree on the 

mixture ratio j** . This may be expressed mathematically as follows. 

The overall rate of the processes at a given location are a function 

"("■( PiTj ^i^t)  of Pr0r,surG; temperature, mixture ratio and any other 

physical factor UL , We may expand this function of several variables 

in a Taylor series about the steady state operating condition where the 

local values of the factors are D , T ,• K and 4 . Thus, applying 

small perturbations P  i T i (^ and 14 we obtain for the new 

process rate: 

HyJ.^A]   - -Mp+P'/T+T^ F+f1,^1) '11.2 
«w»*«»»««*««^.«*^» 

= -f (pj,^) + p1 1^ + T1 ^ :   L T1 21 +   1*1 ^ 
3 

■*"< 
\,y 

% dT df 

where the barred quantities are to be evaluated at bap  , T - T > 

[- K j^  <incj i/L » W  • Let us now assume that the temperature and 

the physical factors are correlated to the pressure and mixture ratio, 

I.e.  Ta T(p,K) / ^^(ar) and th 

P 
where we have introduced the constants; 

lore follows; 

11.3 

r P a3 
.4 

Tit 
mm 

■ s 
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Now the definition of the sensitive time log Is; 

t 

^- 

$(iUi' -- Ea 
II,1.' 

where Ed. represents the quantity of energy required to Initiate burning 

at station If and timo "t ■ The integral must be ovaluatod following 

the motion of the propellant element; however, since the properties of 

the propellant element now depend on the mixture ratio, we observe that 

tTct  is no longer a constant, but varies with the mixture ratio accord- 

ing to: 

whore 

■ j 

91, * 
9 t^ü     \ 

9t* Ec "•' 

Since fa. Is associated with a particular particle, It follows 

that the perturbation 4r  must be evaluated at the instant of Injection 
P 

of that particle. Then introducing Eqs. il,.3and 11*6 Into Eq* II.5| 

and evaluating at time "t j 

Since •« [^lv,l J does not change during the sensitive time Isag, but' 

rather It retains the value it had at the Instant of injection, It may 

bo taken outside the integral, so that; . 

I 

i- 

• wmiv-i-fafi,^ 

i 
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upon negloctlng higher or dor terms, Substituting back Into Eq. 11.9 wo 

find: 

T(^) 

Now setting: 

fit) '-   t(?) ((^..'«^(-^[i-Ttl 

■t-T 
% [*l(+l)yi']dtl 

%-- ft, 

%■- VLi'Ki 

11,11 

.12 

wo Idontlfy tho lottar OK the interoctlon indices and obtain: 

t(«^) -T(5) a -%{ * .v f'^'C^HW +%?(*)Ltp-m,,.,,, 
4. p 

This equation reflects tho change in the sensitive flm  lag 

from Its steady state value Tf,®/ l®r a particle which beg ins burning 

praclsoly at tlmo X and station g  , when It has boon injected with 

mixture ratio perturbation P*o [t-TiCl^)] at time t-Tt^J arid has 

traveled through the chamber with veloelty W  ^'(t1) f 1  oru'i !ias t)e0n 

exposod to pressure parturbations P1 O^M^'J • 

DifferentiaHng Eq. 11.13 with respect to "t and nigiecting 

higher order terms, there results; 

dt      p L )     di\rh 
Following the treatment In Section 6, wo observe that for one-dlmönsional 

flow Eq, 6,17 becomes: 

im^y) - ^itt^t^t)! i 

. 

Jtf 
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whore kfAi   'Hui ö^b a'"o Iho fractional Injection rat« and fractional 

burning rato respectively.. Since the injection rate Is no longer a con- 

stant, l.:q. 6.19 does not hold, and Instead we consider o^l  to be the 

same geometric fraction of flfU as öl^{ Is of WlC ; that isj 

Utl I Izlng Eq. 6. \Qf  wo have 

rn C 

and then Eqi IJ.I5 bocomes: 

I -h dm I, 

i., h. 

11.17 

UM- W(?)^(-^)[i^^]-^l "■IB 

upon neglecting higher order terms. 

Introducing <P   as the Instantaneous rate per unit volume at 

which gas is produced In the chambor; we may write 

£mbM •   <|>M) dA^ "•l9 

by definition of the fractional burning rate. In the stendy state^ 

this reduces to; 

Hence, comb i nIng Eqs. 11»18, 11 •19 and II.20 wo fInds 

-21 
c^i 

This equation relates the rat© of burned gas generation at a given In- 

stant of time t än(J location ^ to the steady state gas generation 

at location 1 , the variation In the time lag, and the oscillating 

Injection rate. The effect of the oscillating mixture ratio Is of course 

at ncluded in 

Separation of the variables enables us to write; 

$(*■) + %(-)e 99 

. 
, 
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where $» (ä) ~   ~~r 

Thus Eq.   11.21 becomes; 

.1/: dl ai 
L23 

di       ^t 

Bofore Integrating this equation; lot us oxamlno the expressions for 

ilkfi)    and /^J.») [i-fi]    .    Starting with Eqs.  11.14 and 
oft        V ^t' / 
B ?A,  we obtain upon nog looting higher order terms; 

+ ^^l/jl] [i-ftf«)] ■+ 4^r or^r ^'rrt15 
dt I "p /o 

Similarly, wo may evaluate the mass flow perturbation as: 

.25 

Substituting back Into 1:CJ. 11.23 wo obtain; 

jßfäii + «ir*)est^ = iyr?)^- 11.26 
eftv d ft ' dl 

p I       v 

iS (i) f(§) if Jl )    [i -ftfi)] 4   kfther order + 
dS dt \ P /o ^ 

And now let us Integrate each term from zero to the appropriate upper 

limit; I.e.  ä   or -JS" ; while keeping the time fixed. 

arms 
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.27 

rm Jv1 

/o Oft I  K  /o V      J ^1 

Noting that       V(oJ    ■   ifo)   =0 wo obi'oln; 

,28 

^rfi^^-p't^u-f^]]^ •?,' 

We may eliminate the term \/(t)-.~  V (i,)     ^V ä Taylor expansion, see Eq. 6.47j 

If wo can first determine ^~J*   . Since Eq. 11.5 may also bo written: 

/ a 

/ I 

.29 

Eoul*) 

c 
where r Is the spatial location at which on element burning at -g- enters 

Its sensitive time lag, we obtain for the steady state; 

si 7w A i i 11.30 |(?j)a ■?. 

\z<K [ ^ / 

But   f(w  'r1 a constant, and hence we may split the integral   In Eq.  11.30 

Into three parts; 

i ■i 

■   • • 
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Upon neglecting higher or dor terins, wo may write; 

5  '*  IM     \^ '%   l.V) 
.32 

and substituting bock  Into Eq.   Il.|l we obtain: 

1    V((!) ? \4(^)      v.W 
,33 

Now Eq. 11.8 may be rewritten In the form; 

ami then combining Eqs, 11.33 and 11.34 and rearranging, we find: 

2r- 1 

H-'Wi VM .35 

I Mv) where we have made use of: y \"^ l'(^)l 

The term involving  £■--£  "^V b0 eliminated by Introducing the 

definition of the Insensitive time lag: 

Yiiv) 

%' 

f 

Jo \Z f^') X /.   Vj.C^t'd')] 
On splitting the second Integral into two parts, there follows: 

11.36 

^ (■ Ve'^^'MjJä* M.37 

^M 

.' 
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Substituting back Into Eq. 11.35, utilizing Iho definitions Eq. 11.12, and 

comb I n Ing form,  wo f I na 11 y dor I vn; 

/ I 

4- fK Ci-Ti(M)] 

.38 

f     V^a'j 

This equation yields the shift In the burning station from the steady state 

location ^  for a particular propellant element Injected at time t^Xt ' 

There are three contributions to this shift. The first term on the right 

hand side gives the effect of a change In droplet velocity, while the second 

and third terms correspond to a change In time lag due to pressure oscilla- 

tions and mixture ratio perturbation. 

Introducing Eq. 11.38 into Eq. 6.47 there results; 

.39 

*') 

and now substituting this result Into Eq. 11.28^ w<> obtain tho form: 

4- h M $&] 

On examining this result, we observe that tho perturbation In the gas fl 

consists of the contributions of two groups, each consisting of three terms. 

■ 

. 
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The fln:t ;jroup of terms may be callfld the tlnfie-wlse contribution, and re- 

presents tno effect of hie perturbations In the local burning rate, which In 

turn Is duo to the variation In the time lag due to the pressure oscilla- 

tions, the Initial porturbatlon In mass flow and the time rato of variation 

of the inixturo ratio. Tho socond group of term:;., which may ho called the 

space-wiso contribution, represents the affect of the displacement of the 

location whore a given propellent element burn!:.. 

And now using Eqs. 10.I, 10.9 and tho results of Appendix ß, end 

I hen dividing by (fi 6 <P ö s* wo have; 

?. 
ri 

/o        P 
'lüä - 1 [fc^le"^10! &-ivW 
L   % % di' 

i   ( HH- m(v)s &H]e^i(v)rfk^ 
ji1 

.41 U]i^[% ff l^^ 'm)Gl*)e-**V 
r, ^ .(»k) t'di' * Jl' sf 

Those terms may be simplified by considering an order of magnitude analysis 

of the six parts which eontribut© to the source term. Tho maximum local 

value of iii   Is assumed to bo 0(1), and In addition, It Is assumed that 

0(1^ 1.42 

We also note that if G"(^) > H H) >   7(uj)  and /V|(wj) aro each 0(1), 

then Appendix B shows that -~r , -^ ,  3^. and vn <.  are each of the 
r   w\i       Vje« 

order of a perturbation, which is In agreement with our understanding of 

those terms. 

tm 
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Since        )ix     •r^\ci(X1i     must  Integrate lo .1 quantity of (KM), no 

matter how largo     ^-(•O    If-  locally, on  hoklng 0 Taylor  expansion In   uJL'   , 

wo may show that the first term In Eq,   11.41  becomes; 

lo      fo    L      c J Jti' 11.43 

where the Integral yields a term of 0(M). The second term In Eq. 11.41 Is; 

K1 
da' 

and Integrates to 0(M} and cannot bo simplified. Noting that; 

1      f* Ml     K  ui SI? ^ 
e   ^ ^(t1)   s 

the third contribution to the source» term becomes; 

which Is of 0(M). The fourth terms Ist 

%(*) §Mnr(i}GMe'iTi(i v O(M) 
d & 

On Integrating tho fifth torm by parts wo obtain; 

5?«") 

e 

.44 

f% 

[V Tfa ) h ^ ' 
(0^^ ^( 

whore the bar repressats a proper mean value so that when S s 0(1), the 

f ifth term becomes;: 

51-   ""n    ^2 

.•■ I 
And now taking the last term, we have: 

v,(i)^^)(^H^    e 

which  Is of 0(1). 

r. Is  d?. /_ 

1 iiil 

3' <kM 

/, 
e -»fö   )<3 

V/^') 
^f»"> ,/; 

.41 

■ 



75. 

Substituting these results back Into lq. 11.41, we hove: 

HN 
W 

at     s    n  L J 

j^ ^a 

-V^^j 
d* J0  FrT7~.T— 

where 

Q(0 e" ST^
1) 

da' 

and all terms of O(M^) or hlcjhor, havo bQon riGglected. Wu conclude that 

under the present assumptions, Hrrö"   's of' ü(') local Iy; If $}!(%)   Is 

of 0(1), 
5^ dt 

.47 

'2• Solution bv Iteration 

In Section 10; wo derived expressions for 14-ß'\   fSrJ f    and 
%6Qt) ^       ^ 
"~~S"    • w,iich ar@ yivün respectively by Eqs. 10.27, 10.28 and 10.32. 

We must therefore examine the order of magnitude of the following Integrals 

which appear In the aforementioned equations: 

12, / 

I0 
?M tt^-*^* 

where £(t{)  and p^'Jare defined through Eqs. 10.11, 10,13 and 10.17. 

Restricting our attention to the case S ■ 0(1), an analysis of the contrl 

butlng terms shows that for the purposes of evaluating these Integrals to 

within terms of 0(M)J, wo may lake: 



r 
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12,2 

X F(?') = ^ (?(*^ !r n H(w) - T^if ^ s&(w)| e ^{v)jQu*),ir 

flit /<3     —         V ClTi 

whoro 

I 

■ft ji 
12.4 

and Q(i)   has boon defined In Eq. 11.47. Wo note thai' both FC^'J and Yf«') 

which depend on Jp^  ^re locally of 0(1) because of the oontrlbutlon of the 

term given by Eq, 11.45, but upon Integration this form goes to 0(M) since 

J6 aMW Is ö(M), and consequently f^1] and Y^'j rnu5t demonstrste the 

same bohavlor. Thus all terms which do not appear explicitly In Eqs. 12.2 

and 12.3 yield contributions of 0(M ) or higher after Integration, while 

those which are retained yield contributions of 0( 

s 0(M2), and Since \   ■ 0(M), the product fyQ\/ß^J{^) 

£qs. 10.27 and 10.28 reduce to: 

1 0  La "* 

12.5 

A, * u 

whore from Eqs. tu,11 and 10.13, wo have correct to 0(M): 

ifW(i) 

life) „ yV(i)^l +D(Mv) . o^,) 

i^fO^?) tO(Ml) = 0(M) 

12.7 
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And now airier        Sw^v^SÄ   = l S^gj^ 

rt'wi Ite Eqs.   12.5 iand  12,6  In  /he form: 

und    CojnSfteCOJUOf   WÖ may 

Cosine   4 0(M)    r       cujuj*    + O(M) 2.9 

while Qxaminetlon of Eq, 10.32 shows that the ontropy term iss 

^  I O(l) 

This form of fluv oqu^tlons suggests the following Iteration procedure . 

First neglect the terms of ü(M) with respect to terms of 0(1), and then 

utilize the z^'oth order solution to evaluate the higher order terms. The 

resulting zeroth order solution is; 

2.10 

( sint<uf 

12.1 

correct to terms of 0(1), where from Eq, 11„46 the term which Is local I/ of 

0(1) |S! 

12.12 n.M vi _. uv^jiy(i)j(ui)5o
le"5J91^ [ "t^ yv 

(h. 

As we pointed out In Section "I,  when the Mach number is identically zero, 

there Is no combustion,  «...JEI.-*   H 0 , and there Is no outflow, so that 

Eqa. 12.11 coincide precisely with the acoustic solution. That Is, the 

phenomenon Is reduced to the one-dimensional oscillation In a cylinder 

closed at both ends. At the chamber exit, ^ « | (, so that the corresponding 

..... . J 



AM, 

t)Igonvalues Sötis^y  Hit1 equation! 

IAJ = n\'\T (m = o; 1,1,1 "") 
12.1 

characteristic of organ-plpo oscillations! Furthermore; the oscillations 

must bo neutral at these well-defInod frequencies! 

If combustion occurs^ and the Mach number Is small,, but difforent 

from zoro, terms of order M ore added Into Eqs. 12.8 and 12.9, but of 

greater significance Is the fact that the boundary condition at  1*: -.■ Ip 

s no longer given by 
% 

m Of  but rather by; 

12.14 

This relation Is the one-dlmenslonal form of Eq. 7.7 derived by 

Crocco in Ref. 19, (see Appendix A).. Wo note that o(^ and /3^ are com- 

plex functions of the frequency and nozzle geometry, and hence It follows 

that since we have changed the boundary condition, the values of uj for 

neutral oscillations are no longer given by Eq. 12.13, oven If terms of 

0(M) are neglected. Leaving WJ for the moment as an unknown eigenvalue 

to be determined later, we may now set down the equations for the perturba- 

tions which will be utilized in conjunction with Eq. 12,14. First we note 

thati 

12.13 

% 

VYW^ ^Ül).^^ 

^H co^[l-€-jf^]gMc(i 

■i- !rje (HW-^ffi1) s(S-(w)l e-sf4(i') ^(ilJe 

- !f Vj coiwj 
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whoru those results are obtained from Eqso 12.7 and IMC. and the fact 

that combustion Is comploto at ^ = jLo c I> so that d^/ - 0. 

Evaluating tho  iniograls at  the chamber oxli,  wo obtain from 

Eqs,   12.5,   12.6 and  10.32: 

yy(u)fe) -txinti; 4 iw(o [irE^Oco^fi-z'^da 
12.16 

/' 
-UJ ;F(0V^)5inu;(l^1)]^ 

( !& y^ a   -xW'V) t CQ5U; +tu[   [KE(u)(^)^^^H,)]d^, 12.17 

^ 

['^1 »dl" 
B(H)  VetSI^- '   j^^^i Wt")C0^iy^)^  12.I8 

d*1 

+   r:     ^'^^   vH V^*)10 ^^'^ 

11 

Ve    /* 

and It Is notod that f  k>  i and ( (7>  J  are given by Eq« 12.11 

and are to be utilized In evaluating the integrals of tfu (I'J and # r (^!j 

wherever appl icablo. 

13.  Discussion of the Characteristic Equation 

WG may now state the stability prob lorn as follows: for a glvon 

Injoctor, chambor geometry, distribution of combustion and exhaust noxzle, 

will an arbitrary perturbation of the steady state conditions be amplified 

or damped? 

J 
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Note that comparison with Section 8 shows that sovoral now factors 

havo boon introducod into tho nurthomatlcal formulation« That Is, the steady 

state distribution of combustion Is sttil do form i nod by Vrt^ t  but now if) 

considering the unateady effects; due regard must be taken of the Injection 

system geometry and characteristic time OL ,  am1 also the effect of the ?^cond 

Interaction Index Oft  . The revised stötoment of the stability problem there- 

fore becomes: for given O, ; Vf-i) ,   Tfo) ,   ti(l), ^ ,  ^Y\ ,   ^ and %  , 

will arbitrary perturbations be amplified or damped? As before, we will 

determine the stability boundary, l.e«; we will solve for the neutral condi- 

tion JL « o,  s ■ CUJ . 

If (){ ?y(ü) >  Tt f*) }  t^^ ancl r^l arö held fixed, those neutral 

conditions are possible only when a certain relation Involving T^) and the 

Indices ^l and %   Is satisfied, and they will take place with e woM deter- 

mined frequency IA)  , Eq« 12.14 represents the functional relationship between 

the four quantities, and since it is a complex equation, it represents two 

real equations relating the sensitive time lag Z/^J and neutral frequency (Ai 

to the Indicos W- and 9i • For simplicity, we will suppose that the sensitive 

time lag is the same for all propellent elements, where d  represents the 

critical value of the sensitive time lag» Thus for given values of %,  and % f 

It is possible to determine the values of the time lag £ and the frequency (A) 

for which neutral conditions can bo obtolnedt Eq. 12.14 Is the characteristic 
........ 

equation for tho set of eigenvalues d   and UJ . However, as Indicated In 

Section 8, the most convenient procedure Is to prescribe the value of u;, 

and then to look for the eigenvalues 9H, '71' ,  and S    compatible with 

neutral oscillations for that value of uJ . 

Now substituting Eqs. 12.16, 12.17 and 12.18 Into Eq. 12.14, we 

obtain, (see Appendix C): 

■ i 
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IV\ 

13.3 

where V\\   ,  h?, and h3 arc cornplox numbotr, which «aro a unique function 

of the frequency once the rocket chamber geometry; ttie Injection and oxhaust 

systGn)j5 and th« distribution of combustion have boon specified. Thorefore 

Ciq. 13.1 Is the f ln<al form of the characteristic equation of the rocket 

chamber and tneiy bo used to Investigate the stability of a  given rockot system. 

Note that this equation Is somewhat moro complicated than Eq. 8.2. 

Separating the real and Imaginary parts,, Eq» 13.1 becomes: 

Essentially then; we have two simultaneous equations of the form: 

Lot us first eliminate {^i }  and then we obtain the single equation; 

bi i-"^ 

ku(l-CQSui^) - bjSinwji' 

whore ^! ^ k>^ and b| are real numbers and are constant for a given value 

of the frequency, 

We can Investigate the behavior of 91 In the U-fJi plane. It Is Immediately 

noted that 'Tt must be a periodic function of (AM . By setting the denomlna- 

tor of Eq. 13.4 equal to zero, we may determine the values of Mj i for which 

'vt becomes infinite. We have; 

\>x (l-coj-ouf ) =■ ^3 sinwS 

**y\ 

3,6 
^ 

■ 

» - 
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Since ^ has a periodicity of  271    |n the Ulö   plane, wo may. confine our 

attention to the region   0 I   UJ S ^ 211   .    So.lution of F.q.   13.6 ylolds: 

as wolI as: 

UJ<S     ^     B ,3,7 

where        ,- l  ""... £ 5,. 

sinB =      _iMi„ 

Since   ^ — Co^ajJ    approaches üioro faster than    Sinuji»  ^91,   will   fond to 

infinity with the sign of   ~    /[j*  as Uja approaches zero from the right; and 

%    will tend to  infinity with opposite sign as uii   approaches  lift   from 

the left.   Hence UM ■ 0; and   (Aid  ■ ITT   constitute vertical asymptoteä for 

ft    »    The third vertical asymptote of  ft   is given by Eqs«   13.7 and 13.8, 

Examination shows that ^l   must approach  inrlnity with the same sign as at 

the origin to the left of this asymptote and with opposite sign to the right. 

If  Ot   is a continuous function,,   It must take on a stationary value between 
UM*» 

each pair of asymptotic values»    The two values of yJö   for which ^ Is sta- 

tionary may bö determined by setting   rrf\ m 0.    AccordinqIy^ 
dim) 

and hence assuming that   b|    is not  identically zero^ and that the decomina- 

tor does not vanish; wo find that   ^1/   is stationary when 

biSiniAi^    =  bäCoOwI 13.10 
There) are two solutions to tills equation. 

fb? + bf 
ba 

fb? + bj1 
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13.12 

\r\ UJ s". ^ 
bC" ■+ ^ 3 

wJ o, and   UJOT   will   I Is in I ho f I rst ond Hi i id qu.Klr.int.'.., i fol low«:, that 

or - i'hö büconcl uiid fourth, nr.poct I Vüly,  Tln.'so rosulti, are picturud in 

F'Igure 13.1 und 13.2. 

It is ^loar that if wo wish to obtain the minimum value of 7X, 

loutral 0!.JCI I latlonT) at a glvon trequoncy UJ f  wo may tflko 

jas glvon by Eq. 13.11 or 13.12 and substitute back Into 

■he positive valuor. of'/lhavo physical significance. 

compatlbio with 

either 0( or 0^ 

Eq. 13.4. Only 

Wi 

Eq. 13.2 and obtt 

function of UJ. 

Let us 

ceed by elImlnati 

Ih these values of ^ and h ,  wo can also substitute into 

Inyfa.    Thus '/ft, '/t-Mifi  and ^ may bo dotormlnod as a 

where 
^5^ 

bs 

examine the function TUfyJoJ more closely,    Wo may pro- 

no ^Z from Eqs,   13.2 and wo obtain; 

]>4(i - to SuJ S)   - bs  sio uJ ö 

»       ^ z R e, h 31 ^n   '"   ^ 2. x^v^h 3 R e 

3.M 

since the dehorn in 

can van Ish only w 

when kid ■ 0 or 

However we have st 

hence 

rfor of Eq. 13.13 Is either finite or zero, Wo(l^6/ 

lion the numerator vanishes. The numerator vanishes 

2Tr , but the denominator likewise vahlshes there, 

ton that 1-CoJwl) will vanish faster than s^^o     ,  and 

!" 

r 
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Hn t since f) B ü , at wi ■ 0 , wo find Wfo) ■ po with sign -\™  , while 

at UJS ■= nr, 7n.(nr) - ~^- 

The numorator also  vanishes when CAJö IS given by: 

C 05 t/J d  » 

Sin UJS S 

LV'-h b£
L 13.16 j/j r tf£ 

Since the denominator of Eq. 13.13 doesn't vanish at this value of IAJO / In 

general, and since o    is finite,^ vanishes at most only once at the value of 

(A)d    given by Eq. 13.16. 
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IV. RESULTS AND CONCLUSIONS 

I^• Numer1ca| ComputatIons 

Slnco we aro dsoiing with 3 llnoarlzod ana Iyy Is, all modus of 

oscillation, Including IhQ standing wave and traveling wave forms, can 

exist slmultanoously and Indopondontly. However, all moduli have a unique 

frequency for a fixed geometry and hence may be Investigated Independently 

of each other. The computation of the stability limits for a particular 

roöket motor proceeds directly once the chamber and exhaust nozzle geometry, 

Injection system and the steady state distribution of combustion have been 

' described, as discussed In Sections 8 and 13, 

Thus, by way of illustration, a typical procedure would be as 

fol lows: sped fy 

(a) the chamber geometry, length and diameter, 

(b) the Injection system, 

(c) the subsonic portion of the exhaust nozzle, and 

(d) the steady state distribution of gas velocity In the chamber, 

In connection wl*'" t'he above items, it Is noted that the drag coefficient of 

the droplets Jfe , will depend on the droplet diameters and hence on the 

injection iyetiin, Item b, as well as J'ho viscosity of the gas, It Is 

sufficient to specify only the subsonic portion of the DeLaval noszief Item c, 

since the flared supersonic portion has no effect on the chamber oscillations. 

And finally, i*e note that since the description of the combustion process Is 

obtained equally well by prescribing either the burning rate, or the velocity 

distribution, for convenience we may prescribe the latter taking care that 

the axial component of the steady state gas velocity Is zero at the injector 

end, and has a vanishing spatial derivative at the exit end of the chamber. 

This last condition must be met if one wishes to satisfy the requirement that 

combustion is complete within the chamber. 
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Rt.'tuni liuj to I torn b abovo,   It is obsorvod that many JIHeront type« 

of Injector response are Includod in the .uuilyL.h;. of Appendix fl, Including 

for example; 

(I) cciv I tat i ruj vontur I i n Jectors, 

(II) matched Irnpodanco Injectors, and 

(III) mismatched irnpodanco injectors. 

An Ideal cavltatlng venturl Injection system would, of course, have zero 

response to chamber pressure oscillations, and hence result In the following 

simp I If I cations: 

If we define a matched Impedance Injector as one for which the mixture 

ratio alone does not oscillate (minimized entropy wave effects) when the 

chamber pressure oscillates, then the analysis of Appendix D shows that the 

two conditions which mu t be fulfilled are; 

If only the first condition In 14.2 Is satisfied, then the oxldl^er i 

fuel lines will h!ivo the same phase lag, but the injector wNl nevertheless 

produce an oslcllating mixture ratio. This result follows because the twin 

conditions of equal phase lags and equal amplitudes must be met. 

The relationships In Eqs, 14,2 may also be expressed as; 

1 KoK   -        I 

4,2 

IU 

L 'Ä 

da r 
f 
o cl^r 

^   A(ä) if L /^  AC*)  m 

14.3 

oX 

{MI i 
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whoro as boforo, tfio subscripts ox   and f rofer to the oxldlzer and fuel 

respectively. If all three conditions are satisfied, then; 

G(^JM.I1 ■■= MH.KA.L - o 14.4 

to within terms of 0(M) . 

Thus, for casos i und II, Eq. C 2\  shows that n, Is Identically zero 

and hencQ this moans thöt when the mixture »-atlo Is constant, the charactorlstic 

Equation 13. I can be reduced to the same form as Eq. 0.2 even when there la some 

other form of coupling between the chamber and the feed I Ines. Case ill, of 

course, corresponds to the general case of a bI propel I ant Injection system 

with arbitrary relative phase lag between the oxidlzer and fuel line and 

arbitrary amplitudo response for each lino. 

li Is noted that for sufficiently high chamber frequencies, the 

functions (?(u)j, HM,'J(MJ) andM(^)aro negligible and h| again vanishes. 

Thus, to summarize, the characteristic equation of the chambor reducos to 

the form given by Eq. 8,2 when the mixture ratio Is constant, This condition 

exists generally in a monopropollant motor, and in a blpropellernt motor with 

an injector corresponding to cases i or 11, and also as Just observed, In a 

chambor In which only high frequency oscillations are present. 

Once thv^ propel lant injection velocity is utilized In solving 

Eq. 4.11 for Vfl^j , Eq. 5.7 may be rearranged to give; 

f^   ^ 14.5 

tyUj 

nee A, Uj, « /L V« ' '^ 's '"^0f1 possible i'0 evaluate all the integrals 

leading to the determination of the three complex quantities I'M , n-^ and h 3 

as a function of chamber frequency, and then to determine the stability limit» 

of the chamber as given by the eigenvalues %,, %  and a . In closure, It is 

remarked that the complexity of the Integrals used In evaluating K, hj. «^nd V\^ 



procludos any but numorlcol evaluation of these finic lions. 

Let un  now consider the two rockel motors defined below: 

88. 

ch.wiili.'i No, Typo fc ;; L it Ee ■Hi V,v / jut? 

Short 
Short 2,000" 

X.OOO" 
,'.000" 

.000 

. 000 
0.846" 
I. I 50" 

0.1 
0.2 

o. //('," 
0.910" 

. 

. 

where JC^h   is obtained from j-q, A 9 for K ■ 1.00 and where the stoady state 

distribution of chamber velocity Is given by : 

O    i      -±      ^       0.1   2(5L 

o.IZe $   2    <:     0.5 Ee 

o.sZe   £   z   ^      He 

V ^   s O 

0,3 Z-e 

V?   s.   V äa 

and whers/fl « 0.15 for    V^ö   ■ 0.05 (Sot Figs.  4i2 and  14.1), 

SI new w© havo already outlined all of the fundamental concepts, solved 

for the eigenvalues In  ImpllcM  form and briefly discussed the procedure to bo 

followed In övaluatlng all of the component Integrals, we need merely remark thiit 

we will   investigate the first transverse mod© for which      %U   «  1.84129, and 

then the values  I I sied  In Table III  follow d I redly,    Note lhat for  all  These 

cases,   hj    ,   Is  Identically zero.    These results are plotted  In Figures 14,2 

and 14,3, 

If wo examine the curve of   %  versus   U) for chamber number  I 

(   V^ B 0.1), wo see that this curve does not exhibit a minimum; however, 

if  The values for   n^   and    nj   are extrapolated   out to a value of UJ m  I.SO, 

then there Is obtaIned; 

(A) niRe      ^H WN liRa i3X^v\ % i 
,60 
. 50 

0.148 
0.153 

0.0172 
0.170 

0.55 
0.46 

0.30 
0.435 

3.00 
3.1 4 

2.97 
3. 46 

■X' A qualitatively correct, but not rigorous procedure. 
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and It is observofl Ih«! ft'h   hakes on Its minimum value o( approximatsly 2.99 

in I he vie In I hy ol  U/  1.615. 

ExamlnaMon of l-irjuro 14./ also shows that the curve of '/h  for 

chamber number 2  exhibits 0 minimum of X.44 in Iho vicinity of UJ  ->  1.84. 

Hence, 0 comparison of the results obtained for these two chambers seems lo 

indicoto Ihcil wlici) fhe? chamber exhaust velocity is larger, the stability 

limit is smaller,, which moans that the susceptibility of the chamber to 

combustion Instability Is then greater. (See FInure 14,3) We furl her note 

that the minimum '/t occurs at a different frequency for each of hhese 

chambers. That is, the chamber with iho higher' exhaust velocity (at the 

nozzle entrance) has a higher neutral frequency for minimum 0%  - 

A very interesting result Is obtained in an investigation of 

transverse mode Instabil I ly when due to some peculiar1 combination of events 

in the chamber^ the complex quantity  n^ vanishes identically at a given 

chamber frequency. For such a situation: 

ht%(\ - e -t^ 
■2. ^ \ 4.6 

so that either 

or 

71  s o 

K.Rft {\- COSIAJ^ ) -   hzi^,   5110 tu 

4.7 

4.0 

or both hold true simultaneously.    Such a solution  Involves a certain amount 

of Indeterminacy, however,  some general conclusions may nevertheless be drawn. 

L. 
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If  Equation  I4t7 holds olone^   l"h@n    o    is  Inde+ernfilnote.     Pho 

stohllily  I Im 11   Is then given by  Ihe horizontal   line    'Vl, ■•■ 0    in the   '}l , d 

plane.'.  Since the 'fh of any given propel lani  combination  is generally finite, 

this would   indlcale   Hiat  combu;.;! ion   hir.lub I I My can oxinl' al'   Ihat   frequonry 

for which   n^    vanishes; regardless of  the valuo of   fhe sensitive Mme lag. 

Now;   Ihe simultanoouK soluiion of  Lq;..   14.ü ylolds: 

1.4.9 

s 2KJL 

and in this Instance, Tt is indeterminate. The stability I Im if may then be 

interpreted as the vortical line 6 " O   ; in I ho 7t ; J  piano. This 

solution implies that if a given propol iant lu'is a /.oro  sonrJ M vo time lag, thon 

combustion Instability will exist at llio frequency at which  nj  vanishof», 

regardless of the value of ihe Interaction ind»x 7l>  . Thus m cencludi that 

tho conditions that make M3 tend to zero, promote instability. 

If I ho behavior of rl^ and Hi ; at frequencies above or below the 

UJ for which h^ vanishes, Is such that 'Yi  and 0 are both negative, then 

the chamber wlI! be unstable for those frequencies. This follows from the 

definition of the stability boundary, since when the computed eigenvalues are 

both physical iy unobtainable, the amplIflcaNon coefficient Ji.   is then finite. 

15. Oompar I son w i th i-xpor Iment and Cone lusJQns 

In this section we shall endeavor to compare the theoretical results 

presented in the main body of this thesis with published experimental dato. 

We have developed a theory for a complex physico-chemical phenomenon based on 

a hypothetical model of the combustion process. The Justification for such 

an approach resides in the fact that not too much Is known about the myriad 

factors which influence the behavior of the entire system. However, the 

validity of our approach can be assessed only In terms of a direct comparison i 

j 
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*- 

bolwoen Ihü Ironds predicted by IhG ("hoory and I'he results obtainable dorn 

cxpoi imcii ( . 

Hit? primary consideration which prevents such u dlrocl comparison 

Is iho fad I'hai Itic Ihoorul Icol 11 IHI Imcnl pr'."UMI I i.d IMM c is fui Iho siühilily 

of a  rocket system agoinsl' dlsturbancos of small (jinpl i ludo (appllcablo lo the 

on sot of combustion instability), while hhe majority ol pubiished results 

dual with Iho iiilly developed instability characterized by non-linear effects 

Including shock waves and vlncous damping. 

Because this situation was rocognlzod hy Orocco üofno I Imo ago; an 

oxporImontal program, supported hy the Bureau of Aeronautics, Department of 

Iho Navy; has boon under way at the James Forrestai Research Center, Princeton 

Unlverslly, for fho specific purpose of studying tho dovolopmorrl of combustion 

Instabllily in liquid propel lant motors. A comprohünr.Ivo troatmont of t'ho 

experimental findings is given In Iho rcveni work of Matthews (Rsf. 23)» 

Sinco Iho major part of Matrtrhews' work deals willi the experimental deter- 

rninnllori of Iho combustion time lag in motors oporaling at ossont lal ly 

constant mixture ratio, with a modulated propellant Injection system which 

produces a low frequency oscillation In Injection velocity and propellant 

flow rate, we cannot make any direct comparison wiih his work. Additional 

experimental effort along the lines of the theory developed here Is cleai ly 

required, before such a direct comparison Is feasible. 

in any case, we must look elsowhero for a verification of Iho 

analysis. The accurate determination of quantities oscillating at high 

frequencies is always a difficult undertaking, however, aside from flow 

visualisation, the quantity which Is perhaps most easily determined Is the 

frequency of chamber pressure osc11latlons. Thus, our theoretical results 

may be compared with experiment with regard to two separate measurements or 

observations, the gas motion, and the chamber pressure frequency during 

*  ■ 
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unsteody motor oporotlon. 

Lei   us begin with   Iho moi ion of a gas pLir M*; If.     II   Is of  some 

inlorc.i   Id   Mi si   .'ikct'li   Iho mcnic. of   or.c. i I lui Ion a!   an oxlal   stnlioii  foi 

Ihc values of    5vt^   given  In Eq«  5.213,    This may be accomplished by noting 

lliüi   al  on oxldl   station,   the poriurbät ionr.   In ges voice My rind |.)i r.'ssm r 

may be wr11 Ion; 

ir. 

Y, 

Ve 

0        ^ 

-r      / \ Ä       ^t 
On (^nhr;  co^riQ e 

i^n (3^r) Lo^9ew 

dr 

r 

15. 

The sketches shown In l" Ig. 15.1 then represent the isobars and the Instant- 

aneous directions of Iho gas particle motion In a tangent lai-radial plane, 

at a given station ^ at time X . In order to consider what transpires 

as the I line Increases, we observe that the result depends on whether we have 

standing waves or traveling waves (or both) in Iho chamber. Standing waves 

may be identified by the presence of stationary nodes or nodal diameters, 

indicating that two trains of waves of equal amplitude and frequency, but 

out of phase by IOC0, have traveled past each other continuously. Such a 

situation is possible only by the process of wave reflection at the boundaries 

of the rocket chamber. 

The standing wave form Is easily obtained by no ling Ilia I increasing 

lime progressively reverses the pattern of particle motion and changes the 

algebraic sign of the excess pressure, so that when wt ^ TTH , the motion 

is completely reversed and a pressure deficiency exists where there was an 

11 
«I 



QXCQSSf and vlce-verso.    Al    U^x,   ta   2J\ V},   Hie oi iglnöl   picture  Is rumltji i'ii 

In  ih"  Iravellng wave form^ or öpinohicj form,   Ihc pa+torna shown 

iti I ir).   I'). I  cuti IOIOIO coni Itiuously,   IMIICO !:qs.   I'J. I  can .il^o b«^ wrlllen   In 

the  form: 

t\j 

Vr- 

V, 

«1.5 

/-v/ 

olr 

r" 
W'i t +n^ 

D  '^-' 

and It Is clear that the time for a complete revolution is given by 

A 4-  nrn 
^X ■ ""TT"  • If wo restrict c T attention to the firyl tängüntial 

mod6; and note that the particle velocity Is superposed on a moon gas motion 

Vjg.  ; the resultant pai Mcle motion may be skeiched as In Fig. 15.2, in 

which the gas propagator, axial ly as It spins, so that the motion of an 

Individual gas particle is somewhat like a corkscrew. The number of complete 

revoiul ions that an individual gas particle makes In Ihn chamber can be deter- 

mined exactly by considering the Lagranglan derlvativo of the pai liclo motion, 

I io wo vor, an approximate value? is given by: 

N - 
UJ f-. ■■ 

^rn VÄ&V' 

Note that If there worn no mean motion,, as in a cylinder with closed ends, 

all Iht.' gas In the chamber would either "slosh" or "spin" simultaneously at 

every axial station. It Is also observed that the linearized analysis permits 
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I ho slmultonQOUS ©xlstencQ of any comb i rial ion of 'ilondiiuj <.'jruJ Iravol Ing 

waves wilh urblirüry diroc-: I ion of roluMoni 

In Hit* cypcf IIIKMI Uli itm.'sl iijoiluii i cpoi Ind inUcd. 15,   probe 

microphonor. weru iilili/od lo (lolorminu llio f rt^iuuncy and Ihc amplitude and 

phase of llio pressure osc I I la1ionst On ilio basls ol Hioir moü'juromont.s, tho 

authors clalmod Ihal llio first transverse mode could be detected In Hut 

standing wave (slosh lug) form. On Ihoothor hand, slrook photographs havo 

lioon lakcn l'hioiii|h Iransparonl si 11 windowr. by ol'her Investigators (see 

for example Ref. 2\),  which indlcalod Iho prosonco of a  roiciNricj lumlnous 

'/.omi uhlc.l]  propanatos on a hoi leal path along tho chamber longlh. In hi Is 

particular caso; iho authors state that their expor Imoiii'a I ty determined 

frequoncy is approximately that of the first transverse mode. 

These results give credance to the possibility of obtaining both 

standing and travel Ing wave forms during unsteady operation of the com- 

bust ion chamber. Our analysts anticipates the results, obtained by frequency 

measurements since we have already observed that iho frequency of neutral 

osclIlattons  UJ   as determined by an actual solution for the eigenvalues 

UJ and  5 ^ will have the same order of magnitude as the value oi u.l 

given in Ig. 7.6 (the exact solution ol Iho wave equation In a cylindrical 

chamber with closed ends)» It is fur!tier noted thai since the experimental 

value ol Iho frequency during unsteady operation is very nearly given by 

t'q, 7.6; some investigators have assumed that the gas dynamical behavior 

of the chamber can be adequately described by the classical wave equation. 

This assumption obvl^ sly overiimplIf leg the actual state of affairs» 

In cone tu-:, tori; v-■;  remark that since the characteristic equation 

of a general rocket system lias now been solved Implicit I y, for two important 

median Isms capable of prodi'i ing linear combustion instabil My in I tie high 

and Intermediate frequency ranges, this solution may now be used as a research 



loul   in which i\ hidiid  i n VUG M (jo r ion of   Iho honavloi   of   dlfforoni   rockel" 

motors  is mado.    In such o paraii.efi ic  Investigation,   Iho susceptibility of 

flic rocket motor   ho iransvorso w.ivo or cnhopy wavo  Instabil Ity can be 

dolorminod for di fIsrent 

1) di sir Ibu1 lour, of  combust Ion 

2) chüinhor (jcomuh y 

■ 3) Injßction systems 

4) ©xhausl nozzles, 

In viow of Iho complIcalod form of Ihu solution, it Is unlikely 

that tho gonoriil bohavior of a system will bo oniablir.hod wilhonl a major 

of fort along the linos of midi Ilona I numerical computations.  Iho I wo 

numorlcai ceaos troaiod horu roprosonl I wo of I'he more interesting results 

which have already been obtained In I'hls program of invtstigatlon. Great 

diff Icultlos worn oncomrlorod durinrj iho course of performing the computations 

Negative results (uninteresting valuos of tho olrjonvaiuos) were obtained In 

a number of cases which were therefore not Included In I'hls presentation. 

It is fell thai Iho two cases which are Included In l"hls analysis are 

typical of the results which may be obtalnod In an analyI leal Investigation 

of combusi ion instabi I ity. 

.^p 
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TABLE I 

Computod Va I uos of Three-P Imons iQUO i Hozy. I e Admi ttanco Coo I f I c i ontj 

The following ers hold constair y •i.ßoooo 

K ...i.ooooo 

S^  «1.84129 

a, Vae« o»ioooo 

(Ajf, t 
1.0000 
1.2500 

0.3275 
0„233Q 
0.1318 

\A  ?hCK iu 

J).Kft«C 5839   rad 
«.4506   rad, 
a.4530   red, 

Ji%t 
0,2779 
0.1802 
0.1001 

0.1732 
0.1490 
0.0867 

lAJ^i 

0.7500 
1.0000 
1.2500 

|1S 
0.3631 
0#3079 
0.2469 

B ?hw« 
5.0850 rad^ 
4 .0: rad, 
4.3086 rad, 

^Re   ^ 

0.1311 
0.0082 
0.0972 

X»v» 

0.3381 
0.1:070 
0.2270 

0.7500 
1.0000 
1.2500 

Cl 
0.1025 
0.0626 

C?h c\ie 0 ^t.        01'vt 

3.2780   rad 
2.8142   rad, 
2,3590   rad, 

0.1650 
0.0971 
0.0444 

0.0229 
Ü90320 
0.0442 



b. VÄc..o. 20000 54, . 

a1.20000 

«1.00000 

.1.84129 

0.7500 
1.0000 
1,2500 

.A 
0.4273 
0.3425 
0.2565 

2.8020 rad. 
2.7630 rad. 
2.8409 rad. 

- 0^4025 
- 0«3185 
- 0.2450 

0.1434 
0.1264 
0.0759 

UJ-fi 

0,7500 
1.0000 
1.2500 

m 
0.5098 
0.4502 
0.3874 

© PK< «.St. 

5.4100  rad, 
5.1420  rad, 
4.'8881 rad, 

%a^     %z 
0.3291 
0.1078 
0,0677 

m 

0.3896 
0,4105 
0,3014 

UJ.(~,^, 61 C Phaje 

0.7500 0.3245 3.5900 rad. 
1.0000 0.2135 3.2450 rad. 
1.2500 0.1438 2.9246 rad. 

CR4 C'IfVl 

0.2920 - 0,1415 
0.8120 ~ 0.0220 
0.1406 0.0309 

\b 

J 
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FABLE II 

Q.Q^.ßX'.l'M ,^,'1* ll,('.';. .9,^, Pf\^."'fl!irKlll!^i.P..nal ^ N^/7.1 ä Adm i ttnncü Coof f i c i^yl.;,^ 

The following are held constant: ^ ^   1.2000 

K « i.oooo 

SnV. =1 o 

■ i.  Ve^ 0.10000 

(AJ-f,^ 1^| ^ PK IXSC oWc 
0 (UXKX) 0 rad. OolOOO 
O.ObOO 0.1509 (UKIU) rad. 0.1017 
0.1000 0.2473 1.12SS rad. 0.10 GO 
0.1500 0.3539 1.2453 rad. 0.1155 
0.2000 0.4(539 1.2930 rad. 0.1275 
0.2500 0.0715 I.2203 rad. 0.1417 
0.5000 1.1175 1,3339 rad. 0.2625 
0.7600 1.6S99 :h2932 rad. 0.4496 
1.0000 2.1301 1.2430 rad. 0.6877 
1.6000 3,0121 1.1422 rad, 1.2520 
g.sooo 4.3898 0.9709 rad. 2.4520 
5*0000 4.9316 0.9147 rod. 3.0100 

o^ 11 \ 

0 
0.1115 
0.2230 
0.3345 
0.4460 
0.5037 
1,0865 
1.6771 
2.,02 24 
2o7395 
5.6420 
3,9080 

0 
0.0500 
0.100Ü 
0.1500 
0.2000 
0.2500 
0.5000 
0.7600 
1*0000 
;),f5ooo 
2.0000 

0.5000 

0*4795 
0,4^.60 ■' 
0.3429 
0.2329 
0J.O^ 

0.02^5 

/4n piv\je 

6.2032    rod, 

5«7143 
5.1400 
406029 
i4.076ii 
3.0257 
1,6873 

rad. 
rad. 
rad. 
rad, 
rad, 
rad. 

N 

^ Re. 

0.5000 

3n Xt 

0.4040 
0.1000' 
0.0374 
0.1379 
0,10)47 
0.0031 

0.2583 
0,3860 
0.3409 
0.1870 
0.0122 
0,0253 

Intorpolöted 

i I 



\/&« 0.2000 

—...   1 ^^^ CVn PK<N5e M /^n PUfe 
0 0.1000 0             rad. 0.5000 6.2832 rad. 
0.2500 0.4.W5 1.2947  rad. 0.4831 5.6766 rod. 
0.5Ü00 0.8012 1,2662 '*ad. 0.4281 5.4602 rad. 
0.7500 1.1084 1.2212 rad. 0.3678 5.1052 rad. 
1.0000 1.5110 1.1610 rmi, 0.2909 4.7623 rad. 
1.5000 2.0942 1.0400 rad. 0.1506 4.2469  rod. 
2.0000 Mi .., 0.0624 4.1263 rad. 
2.5000 2.9469 0.0445 rad. ., «M 

C.    Vfl« 0.3000 fe,: 

. "h 0(vy ^n FUw. /u /3n PUJC 

0 0.1000 0           rad, 0.5000 6.2032  rad. 
0*2500 

1 - 0*4862 5.9644 rad. 
0,5000 0*6273 3«2124 rad. 0,-4396 5.6549 rad. 
0.7600 0.9153 1*1695 rad. 0*3915 5.3742 rad. 
1.0000 1.1760 1.1064 rad. 0#3264 5.1252  rad. 
1.5000 1,6160 0.9700 rad. 0.2072 4*7700 rad. 
2.0000 1.9650 0flÖ500 rad. 0.1268 4.6570 rad. 
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Resulfj obtained lot   the two chambors dwfinyd in Söction M 

Chamber No. I 

(AJ 

1,7000 

1.7500 

1,8000 

1*0^00 

1.9000 

1.9500 

h 1 p a. 

0,.lliü2 

0.1361 

0,1319 

0,1278 

0,1237 

0,1196 

ntjc. 

0.0173 

0,0173 

0,0168 

O.Oi'V; 

0o0l6ii 

0.01^ 

0.6273 

0.6666 

0,7032 

0,7266 

0,7^ 

0.7727 

^1"! KV\ 

0,3226 

0,268!) 

0,2557 

0/226^ 

0,1962 

0,1603 

71 

3.0196 

3.0770 

3,^28 

3.2606 

3.3667 

3^039 

.: 

2.5509 

2j.i6oy 

2o2733 

2ä1667 

2,060ii 

1,9668 

Chamber No.  2 

wwawmMp 

UJ 

1.7000 

1.7500 

1.8000 

1.8500 

1.9000 

1.9500 

hi H 

0,2306 

0.2717 

0.2631 

O.25J42 

0.2J457 

0^2369 

^ l Irr 

0.0502 

0,Oii87 

0,Oii67 

0,0^47 

0.0^36 

0. 

1 • 3 K'ö- 

1.1833 

1.1750 

1,1670 

1.155^ 

iöiii5o 

k 31 (ftf» 

0,3870 

0,3280 

0.2769 

0,2238 

0.1857 

0,liil2 

n, 

ZokSko 

2 Jiii 70 

2J|ltü5 

2«ii623 

2jj77)4 

s 
2«1,|281 

2.3092 

2.1993 

2.0932 

2.0077 

1,9102 
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APPENDIX A 

Suporcr if Icuj .Qscl I latory D[;:.c>\..uriQ of Convoi qlni|H.) I vorc] inj.] Nokias 

Tho oscillatory discharge of convörglng-dlverglng nozzle operating 

in tin.' stipui ci iiic;.ii tdiiqu IM'., boon tTeoted by Tslen (Ref, 6) and Crocco (Refs. 7 

and I1.)). 

Tslen'ö troatmont was one~dlmenslonal and was restricted to the 

case in which the osciiiations In the Incoming flow were isothermnl. Further- 

more, his solutions wore obtained for very low frequency and (or the asymptotic 

case of very high frequency. Of these, the latter of the two is boyond tho 

rang© of applicability to rocket motor oscillations, while the former is not 

sufficiently general. Thorefore, Crocco extended this treatment to the goneral 

case of longitudinal and transvorse non-Isothermal oscillations, and he 

obtainöd s< 'utions over the full frequency range of interest. 

We have used the results obtained by Crocco as the boundary 

condition for the combustion chamber analysis, and  have written these in two 

differer.t forms. For the analysis of transverse perturbations, we have takenj 

where (/lp^) and C are the nofczle admittance coefficients and are complex 

functions of the frequency UJ , S'^h , and the nozzle geometry. This equation 

states that for a given nozzle, the perturbations at the nozzle entrance must 

bear a certain relationship to each other with regard lo phase and amplitude 

If neutral oscillations are to be maintained for a given mode and frequency. 

For the purely longitudinal case, we have taken; 

% 

50 To    I lo 
12.14 

It Is clear that when Soh " 0, we are treating the purely longitudinal case 



l-p^-.- 

A   / 

'Hid [iq.   /./    inu'.l   t L'itiii.ij lo |(j,   |2. M.    For' one-dimensional   flow,  the 

subscript   1J-   i'   m.)   lonijoi   necos'-.riry .ind thon wo obtain; 

Jl .-.. ^v«      )      £ =• -,^ve A i 
It Is of some Intero'..;! to conrldor I ho odml jtoncoij b(v]   und /^ 

In grQflter detail.  In Rüforonco (), Tsion ho:, lihown Ihut for noz/lo;. which 

have a IIneat variation of velocity In theh subsonic part, the governing 

oquntlons hi u non-homogeneous hypergeometric difforentlal equation In the 

form: 

^ 

t/3te 
~.L y- 

i(v+i) 
K- + 

2. (ir-i-i) 

 iL.u 11'- -t^-—' 

4 V   'J' 

A 2 

V^ 
Wliwt o 

- *\-\  w 2- 
U a ——j g0 that at the nozzle entrance M ^ "^ «3- Vg, an^ /3 

non"dImenöIoiu;il froquoncy /S ^ ^ A^  which irmy ho rolatfd to tho ^K)   of the 

chamber' which appears In all the chambor oquatloruv and honco U).(-u will be 

used as the independent variable for all the curves of the adml I'tances, 

The relevant condition to be satisfied at the nozzle entrance is 

given by Crocco (Ref. 7) aaj 

f> - XCTe - ^€e c A 3 

In this same reference, a series solution was obtained for low frequency by 

taking: 

A 'i 

hiiwovm, Ihn sorios was cut off aftei only hwo herms and I'he results were 

correct to 0( L/3 ). Since that reference first appeared, some exact numerical 

solutions havu i)oen obtained over a wtclo frequency range, and direct comparison 

shows that o{v\  and /2n may be determined analytically with sufficient 



A-3 

accuracy wnen iAJ.,r,<o.2 by Mrbt calculating an additional term In hho 

MM itr.. when Itii', i;, done, fhore  results: 

% 1 i-^i^T^)^^!^^:,^ 
C 

r,.. 

ild ver? v;. 

+ i 
4. fr--i 

2(1-^)       i-    ^ 

1 

+ ^Ve K€e 

For oxdtriplu,  t.nking     ^ «>   1.20 and   V^. ^ ojo t  wu obtoln: 

^    =    'I   [ 1  -^   ZZ^OOL/3    -H   ^.^S/S1"] 

As stated previously, all graphs of ^^  and /3/\ are plotted 

utilizing lAJ,f.|a. as the Independent variable, This quantity is related to tl 

frequency In the chamber by means of: 

b0.f l4 r "^ 
^  1 ^ N -a 

V-H A / 

where K   Is the non-dimonsional velocity gradient In the subsonic portion of 

"ho nozzle: 

/.' 

K A 8 

Thu,y, tlie smaller K is, the lomjer Is the subsonic portion of the nozzle, 

since the length of the subsonic portion of the nozzle is given by: 

r ^ 
i< 

1 -^41 v* A 9 
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The graphs of Cfl , Nt) .„uj Care  Mkewlso plotted versus    ^-(Vi   ;  hu1 

0 
In this case, the froquoncy In the chamber (A) IS related to ^rvL  by 

c 

11 
"2. A 10 

since another scheme of non-dimensional IzatI c' was utilized In these 

computations, 



Al'(UND IX U 

We will detsrmlno hero the variation In tnlxlnij ratio und iiijectlon 

volocity d'i ,1 hmci ioti of Iho use i I l.il ln<) prusr.uro dt IIK.; Injuclor f.u.i,'. 

This will be done l)y first considering tho frequency response of a single 

föödllno und thon sölectlng the doslrod Impingement pattern to yield the 

combined effect of propel lant und oxidl/.yr. Tho rolovunt oqurrflonG for 

quasi-onfl-dlmonslorxil Mow in tho feodllne ares 

.' n f 4 H 1     u      ^      / /? # A * V/ ^ 
■\\t   ^     '    *    21*    [fr   k     VjL ~ O 

■;:: 

f  Vj? v/ ^ t 

wiiich are ihe consorvation of mass and momentum respectively, and where n 

a p ^ 

li I 

B 2 

Is the cross-section of the food! ino. Tho coordinoto nystöm Is Inclicatod In 

Fig. HI, 

Upon non-d i mena IonaI UIng as fo11OWB; 

V.0 

/i 
/i 
i5- 

s 3 V 
Co 

••^ 
//- 

...;,;.. 

JL 

■MWRMWABD n 
Ar 

where L Is the chamber length, wo obtain; 

Introducing Bmall perturbations, 

B 3 

B 2a 

B 3 



r 
.—•-«CSffli 

B-2 

continuity and niümuntum yiold; 

1'AAV, a?. ^ '•nv« 
i ( m ) - o 
di. 

1    dp 

w irifiy lir.'pofdto thu var luhloi.'i l.y lokiiuj 

n lc 

2b 

11 ;.v 

B 4 

rind than wo obh.'i 

B Id 

B 2d 

Bofon solving th®s® aquations, let us briofly conijldör tho boundary conditions 

Al1 tho Injoctor face, ( ^ « ()), tho steady state pressure and Injection 

velocity havo thoir (''dgn valusn whllo the presour© perturbation must ho tho 

chaiflbor provmra  perturbation; and the as yet unknown velocity perturbation 

will nor r on pond to ^in initial condition for the chamber. Because of the 

relativoly HITMII diameter of conventional Injection port!.;; with regard to the 

reservoir proper, which means that only a small liquid Inertia Is involved, 

and because of the further likelihood of entrapped vapor in the reservoir, it 

seems reasonable to assume that the reservoir pressure '^ Is constant only 

a short distance from the port. That Is, the reservoir proper, Is an Infinite 

source of liquid and the velocity vanishes where the pressure Is constant. 

Hence, we may summarize the boundary conditions as; 

13 5 

I 
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B-3 

nIiM|i .11 iIKJ \\\.  M XI) and applying HIG boundary conditions, we obtain: 

B 6 
P^ =   ' +  f %vi» 

|(|'..  ;    ili .UHI \\  \c yield 

oi 
Fji A^     :r    rr^    ^   con ST. 

Nuw  intöcjrf.vtlni] ['.(]> II 2d ffom   H.^ to   T?    « 0, wo obta 

;i   .(*)d t      + ^(v^) ' «J 

d^ 

On Introducing Eq. 3 7, llu) first term yleidss 

■to. ^ 

/' o 
^ 

i   r z'0 daT 
where     «.  « ^-     Is an equivalent length. U(1r   LksMU 

Substltutlrifj bock diid solving for   ^\0    , we fine 

A- 
where the quantity 

a = 

s a d linens Ion I eaa character ist I e time of the food I Inn. 

We may define the transfer function: 

C üt" 
which, for neutrial oscillations, becomes: 

1.1 B 

I) 10 

B 12 

13 13 

And now, let us use this result In deriving the response of a 

typicul liipropel I ant Injector where wo will lot the subscripts ox. and f 

denote oxidlzor and fuel respectively. If we consider en Injector of the 
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ypu '.iliowii   in I i(|.  []'/.,   Ihun  Ilii.»  lorujItiKl iruil  compniiDni' of   Injoctlon voloclty 

VXo   S    (^0^)ox    +     (V^COYO-I w M 

where we luwo misurnod conservation of the axial  component of' momontunfi during 

impingemont  in  NIQ steady state,    And  for unsteady Mow, under the same 

n;. sumption, 

V i^' g(uj)coy)oX 4- (frrAcoS^A %e &-t M  l!3 

whoro wo havo .isiwimod Hint the luol and oxidlzer ports oxpörlencö the same 

Instantaneous chamber pressure. 

Proceeding, we let i  denote Nie mixture ratio, then 

K = P + l"1 - £2 

where we hdve neglected second order termc. and where 

the fractional perturbation In moss flow. Now, 

/A" denotes 

Mi) 

^\ 

Vio Uli = 

end hence substituting Into Eq. It 16 we obtain; 

N y&, /ex 

UJ ^ e si B 17 

F A 
x^;o = ^e si 

B 18 

We may now obtain a relation for the fractional perturbation In 

the Injoctlon rate. Since, 

there fol lowr3 — 

mL =.  —H!— uJ>t + ^4 B 19 

and on introducing Eq. 13 17 

•r-M ^ -g 1 v.e 
st B 20 
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II-', 

and wo note that vil thoucr 
no, 

Ik 
for each hnMllIno, wo cannot put 

Eq.  B  15  into the s*m form as Eq. B 20,  slnco  In gonornl  (co^ )0><    and 

CoSßJjf   rre not equal.    Thus 

ViW i iVUC0S/i),H  +     (^coi/3^      J^6        liZI 

Honc9 the tr.nsfer function for th. car,« of a blpropsllant Injector U given 

by 

%  =    TMyt0 V. ß 22 

wliorn 

Wo niuy summarlz© those results by writing: 

li /". 

B 24 

wherü (:r(^j, and hjl^) tir(>  defined through Eqs. B 18 and B 20. Wo note 

that If another Injection system Is utilized, then thö analytical form of 

the Injector response Is nevertheless given by equatloits of the form H 24, 

One additional quantity will be derived here, We have stated else- 

where that we will assume that C^P   ■ 0, and we may therefore observe that at _ 
each particle will retain Its Initial value of nj^s ,  H^c being a constant. 

This enables us to writo: 

B 2^ 

0 ^t^1) 

■ S 
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The specific enthalpy Irijg, of fho propoMunr:. dupoml!, o/i Ihu 

Instantaneous value of the mixture ratio and hencl the enthajpy will be larger 

or ^mnllor dopondlng on fho mUiun, r.rlio which In turn dupo„d;) on tho 

pressure at the chamber face. Expanding k In a Taylor sorlor. .bout Itn 

steady state value, WO obtain; 

u -.-. h, *    ibi (K-r) -v •• 
and defining 

aK ■ 
li 26 

we obtain 

Thug Eq, B 'B becomesi 

B 27 

^™ = «^f|Pfp5^f ^p 
■ 

— 

and substituting from Eq, 13 24 wo obtain« 
i 

\{   f* ck1 ) 
B 25 

which defines M (W) 

. 

i 
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Appendix c 

iW 

'- 
F-H: ::^1:'. 

We will boghi by Introducing l-q. |?.|3 Into Eq. 12,16, and then 

setting  f(^') a ^   (constant), there follows! 

UJ 
/ u 

which may bo rewritten as 

-S- 
H 

-(iiniAj - irl4cojuj + 

+    3 ■"DM  + B^) 
whoro wo have InlToducod the notation 

IT -   v | H(w] - Tn,^ (vo G-M[ 

L(w)-   ('  g-^Tffc1)  dübele' 

and upon  Intogrotlon by parts,   It may be showh that 

D(^)    = CoSw(l-£'j co.S U)i-.'    d^fj^J-i' 
A' 

Uu/) 

'0 

«   Ve coi u;   - ui 
■  IM 

C 2 

C 4 

•   ■ 



■>(-< V_ *-s~~ ■—' „WT^W—«i -<--:^.' 

:- 

•  , 

■ 

wIMK)   B/u))   consists of the tsrmsi 

- ff I' sm w (i - zOdi' (,,■'e-lW'fi(^", Iv ^«jo/j 

"1 f^I1' #Ä^1—O-^')^' 
UJ    Jo 

hfa) smujE1 5inu;^i-.e<)ol 

■ kl%') C 13 

i 

L 

. ■ 

Ths first, fourth and Sövarith form may !)Q expandöd and then «omhinejd to 

ylöld; 
i 

ilfrw 
If wo now defln#{ 

A (a) « -4(6)^*) i 
'hfn from Eq. 12.12 wo obtain: 

——W—g—M^^^BI—1 c» / V»»   1 

f't*) =   JHe^^^U^j C 8 

and 

.tt 
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' 

 ^ix^inii"*) .I ii-i i'MM^IW»W*<* mici 

s I nee 

, jeaBBD*-* 

i     fife)    r d     P     d*1 

I!      ■ 

\U) 
■Cfil--     '    '       '— 

so thül  upon   Iniroduclng tho notcitlon 

1 

■ 

c 10 

i 

"^ Q    \.   - -   r la I M I ' ■'      « 

/r--JN 

Eq. C 6 böGomes» 

■ 

■ 

f   r: 
MMM IA) 

T.B 
sinw )   V^O^1   -(i-^)uj 'E>ä^) 

2. /Q 

C  II 

and than Eq. C ^ may be wrlttenj 

/ T 

[ 
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Ta«*  
■ 

WÜ '"■'V  '"^  "'■   K'-n'' ""'i— '■.    Firsts t.tulo 

^  12.15 Into E,.  handset    r^= d~ ..o,^,,,,,,.    -,-„„„., o.,,,:,,,, ,.,„„ 

-   (Uj 
■■ 

■ ■ 

o L^F   ^')Co^(i-e')]di 
which may be rewritten as- 

IpJ   ~    CosStAJ    4-   21 Ve 5inuj 

' 

-■1- uH_. CN   + rA/w) 

ti. • 

«h«r« upon Integration by p„rt;;, it f„ay l)0 ;il,om fM. 

CM -- y£ ^Uoiiu^^)^ „ 
and  h(\ti)   consists of ttiQ formi 

( —— 

CO^ujCi-^Odü' 

-i- <k 

i„ 

C I 5 

C M 

C 15 

C 16 

I 

-^  I 
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Tlio firsl, fourili nnd novuni'h form  m^y bo expanded and then combined to 

y IDI ti { 

And, upon introducing tho notation: 

A.M.    f co^f,^^^' fe-1^^ ^^^, 

C  IB 

li'q. C  17 becoinöS! 

whlIG Eq. C IB may be written: 

C 19 

C 20 

t/U(wj)1 « ^(AJM^)A4(UJ) 

At this point, we moy Insert Eqs, C 2 , C 14 and 10.32 Into Eq. 12.14 and 
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C-6 

WG pbtalnj 

wln.-i •• 

J '     C / 

kt =•   -UVt p(^ C(UJ)   -^ D(oü) 

C 21 

C 22 
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